首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  完全免费   1篇
工业技术   6篇
  2017年   2篇
  2015年   1篇
  2014年   1篇
  2012年   2篇
排序方式: 共有6条查询结果,搜索用时 31 毫秒
1
1.
为了判断抑郁症患者组与健康对照组之间是否存在显著的基因型差异及基因型与疾病状态间是否存在显著交互效应,选择GSK-3β(Glycogen Synthase Kinase-3β)基因,通过功能脑网络指标进行统计分析,并利用统计显著性作为特征选择的依据,提取不同数量的节点属性作为分类特征。选择四种不同的分类算法进行分类研究,结果表明SVM和人工神经网络算法构建的分类模型正确率较高,疾病状态分类模型分别达到73.50%和70.87%,基因分类模型分别达到74.35%和76.66%。因此,基因对静息态功能脑网络存在着一定的影响,并且证明了脑网络的相关指标可以作为对基因与抑郁症疾病之间存在交互效应的判断依据。  相似文献   
2.
为了构建辅助诊断模型,以提高抑郁症诊断的准确率。在连续的阈值空间(8%~32%)内构建所有被试的功能脑网络并使用复杂网络理论对抑郁症患者的脑网络进行分析。通过设定阈值,根据统计显著性提取不同数量的节点属性与全局属性组合作为分类特征,并选择四种不同的分类算法进行分类研究,以得到构建一个准确率较高的模型。结果是SVM和神经网络算法在阈值P为0.05下,所建的模型的分类模型的准确率较高,分别达82.78%及81.36%,因此利用该方法所构建的诊断模型可以用于抑郁症的辅助临床诊断中。  相似文献   
3.
重度抑郁症是一种常见的心理障碍.功能影像研究表明,重度抑郁症与大脑许多区域的异常有关,这些区域包括海马、海马旁回、中央前回、尾状核等.复杂网络理论为脑网络拓扑结构的研究提供了一个有效的研究方法,但以往的研究方法主要集中在功能脑网络属性的统计分析上.通过对抑郁症患者和正常人的功能脑网络属性特征的分类对比研究,从机器学习的角度提出一种新的诊断抑郁症患者的方法.  相似文献   
4.
目的 传统的静息态功能性磁共振成像(fMRI)的功能脑网络(FBN)研究是基于在整个扫描过程中FBN固定不变的假设。但是,最近的研究表明FBN是动态变化的,而且其中蕴含着丰富的信息。本文提出一种多任务融合最小绝对值收缩和选择算子(Lasso)方法来构建静息态fMRI的动态FBN。 方法 提出的多任务融合Lasso方法可以在构建动态FBN时,保留网络的稀疏性及子序列的时间平滑性。具体来说,首先用滑动窗方法得到交叠的静息态fMRI子序列;然后用多任务融合Lasso方法联合地估计一个样本的所有子序列的功能连接从而构建动态FBN,用k均值聚类算法得到每类样本子序列的功能连接的聚类中心,并将所有类的聚类中心组成回归矩阵;最后根据回归矩阵求样本的回归系数,将其作为特征进行分类,验证多任务融合Lasso方法对动态FBN建模的有效性。 结果 采用公开的fMRI数据集来验证多任务融合Lasso模型构建动态FBN的分类效果。实验使用阿尔兹海默症神经影像学计划(ADNI)公开的fMRI数据集中的阿尔兹海默症患者、早期轻度认知功能障碍患者和健康被试3组数据,并用准确率、灵敏度和特异度来评估算法的分类性能。在3组二分类实验中,本文方法分别达到了92.31%、80.00%和84.00%的准确率。实验结果表明,与静态FBN模型和其他传统的动态FBN模型相比,本文方法能取得更好的分类效果。结论 本文提出的多任务融合Lasso构建动态FBN的方法,能有效地保留网络的稀疏性和子序列的时间平滑性,同时提高算法的分类效果,在一定程度上为脑部疾病的诊断提供帮助。多任务融合Lasso模型可以用于动态FBN的构建,挖掘功能连接的动态信息,同时整个算法可以用于基于fMRI数据的脑部疾病的分类研究中。  相似文献   
5.
针对人脑网络状态观测矩阵高维无特征的特点,给出了一种基于深度自动编码器(DAE)的降维算法.利用深度学习网络,将高维的人脑网络空间表达映射到低维的本质特征空间中,为进一步提炼脑网络的动态性能提供了基础.实验结果证明:应用该方法可以达到有效的降维效果,且降维后脑网络状态通过自组织特征映射聚类具有一定的规律性,从而为脑网络的动态特性研究提供了基础.  相似文献   
6.
针对脑-机接口研究中运动想象脑电信号的特征提取问题,本文提出了一种基于脑功能网络邻接矩阵分解的新方法。首先采用多通道运动想象脑电信号构建脑功能网络,然后对相应的邻接矩阵进行奇异值分解,依据矩阵奇异值特征向量定义了脑电的特征参数,最后输入支持向量机分类器,对BCI Competition IV Data Sets 1中的四组数据进行分类识别。实验结果表明,基于脑功能网络邻接矩阵分解的特征提取和支持向量机分类器的方法能够以较高识别率区分不同的运动想象任务,为脑电特征提取研究提供了新的思路。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号