首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4324篇
  免费   307篇
  国内免费   214篇
工业技术   4845篇
  2024年   5篇
  2023年   43篇
  2022年   73篇
  2021年   102篇
  2020年   102篇
  2019年   105篇
  2018年   86篇
  2017年   148篇
  2016年   169篇
  2015年   148篇
  2014年   237篇
  2013年   331篇
  2012年   292篇
  2011年   396篇
  2010年   337篇
  2009年   305篇
  2008年   321篇
  2007年   318篇
  2006年   252篇
  2005年   160篇
  2004年   121篇
  2003年   128篇
  2002年   108篇
  2001年   93篇
  2000年   72篇
  1999年   54篇
  1998年   47篇
  1997年   50篇
  1996年   33篇
  1995年   30篇
  1994年   27篇
  1993年   22篇
  1992年   19篇
  1991年   21篇
  1990年   13篇
  1989年   12篇
  1988年   11篇
  1987年   4篇
  1986年   6篇
  1985年   11篇
  1984年   12篇
  1983年   7篇
  1981年   3篇
  1978年   2篇
  1977年   1篇
  1976年   1篇
  1975年   2篇
  1974年   1篇
  1973年   2篇
  1964年   1篇
排序方式: 共有4845条查询结果,搜索用时 15 毫秒
1.
The development of small molecules that can selectively target G-quadruplex (G4) DNAs has drawn considerable attention due to their unique physiological and pathological functions. However, only a few molecules have been found to selectively bind a particular G4 DNA structure. We have developed a fluorescence ligand Q1 , a molecular scaffold with a carbazole–pyridine core bridged by a phenylboronic acid side chain, that acts as a selective ascaris telomere antiparallel G4 DNA ASC20 ligand with about 18 nm blue-shifted and enhanced fluorescence intensity. Photophysical properties revealed that Q1 was sensitive to the microenvironment and gave the best selectivity to ASC20 with an equilibrium binding constant Ka=6.04×105 M−1. Time-resolved fluorescence studies also demonstrated that Q1 showed a longer fluorescence lifetime in the presence of ASC20. The binding characteristics of Q1 with ASC20 were shown in detail in a fluorescent intercalator displacement (FID) assay, a 2-Ap titration experiment and by molecular docking. Ligand Q1 could adopt an appropriate pose at terminal G-quartets of ASC20 through multiple interactions including π–π stacking between aromatic rings; this led to strong fluorescence enhancement. In addition, a co-staining image showed that Q1 is mainly distributed in the cytoplasm. Accordingly, this work provides insights for the development of ligands that selectively targeting a specific G4 DNA structure.  相似文献   
2.
NO2 fission is regarded to be the most important initial decomposition process of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20). In this study, four CL-20 conformers based on the ε-CL-20 were obtained after the optimization at m062x/cc-pvtz level, and the bond length, bond order and bond dissociation energy of the N-N bonds were examined to investigate the stability of these bonds. In addition, the rate constants and activation energy of the NO2 fission were evaluated using the microcanonical variational transition state theory (μVT). The calculation results have shown that N-N bonds in the case of pseudo-equatorial and axial of nitro groups are the most stable and the least stable, respectively, by evaluating the bond length, bond order and minimum energy path (MEP). The NO2 fission rate constants are affected by not only the stability of N-N bonds but also the repulsion forces from the other nitro groups, and the fission process for pseudo-equatorial positioning of nitro groups is easier to be accelerated due to the increase of the repulsion forces. The decomposition of CL-20 conformer may mainly originate from the fission of the pseudo-equatorial positioning of nitro groups, especially for CL-20 III conformer because of the significant low activation energy.  相似文献   
3.
为了更好地认识和了解CL-20晶体结构演变规律和相变行为,利用金刚石对顶砧超高压实验技术,在0~50GPa下,研究了高压下ε-CL-20的原位拉曼光谱和红外光谱。结果表明,CL-20晶体在整个加压过程中存在两个相变,第一个相变发生在4.2~7.5GPa,认为是ε相到对称性更低的γ相转变,相变产生的原因是在压强的作用下,笼环外的硝基方向发生改变,电子云密度重置导致的分子构型转变;第二个相变发生在14.2~18.9GPa,属于γ相到ζ相的晶体结构转变;卸压后,拉曼和红外光谱恢复常压状态,表明CL-20晶体在研究压强范围内的相变过程是可逆的。  相似文献   
4.
Recrystallisation often occurs in the freeze-thaw cycles and results in poor food quality. This study was undertaken to analyse the effects of recrystallisation on the changes of protein conformation and moisture migration within red seabream fillets after the freeze-thaw cycles. The UV second-derivative spectroscopy, intrinsic fluorescence measurement and Raman spectroscopy were employed to evaluate the protein conformational changes. The Low-field NMR spectra analysis was used to evaluate moisture migration. The results indicated that the freeze-thaw cycles altered the secondary and tertiary structure of proteins. It was noticed that interactions between water and protein molecules were decreased gradually and eventually induced the thermal instability of the myosin molecules. The immobilised water content declined and the free water content increased. There were significant destructions in fillet muscle microstructure. These observations unambiguously reflect how the recrystallisations affect the protein conformation and moisture migration patterns of red seabream fillets during freeze-thaw cycles.  相似文献   
5.
As the most popular high-energy explosives, 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazatetracyclo [5.5.0.0.0] dodecane (Simplified as HNIW or CL20) attracts many attentions for improving its detonation appearance in the application. Here we introduce hydrogen-storage compounds into explosives to estimate the possible improved detonation performances by Car-Parrinello molecular dynamics (CPMD) simulation, where we construct lithium amidoborane (LAB) doped CL20 as the initial structure. Almost all the interactions between hydrogen and CL20 appear exothermic properties, which indicate LAB increases the enthalpies of detonation. The results suggest explosive mixed with hydrogen-storage material is possibly a new field of energetic compound.  相似文献   
6.
The mammalian cell cycle is important in controlling normal cell proliferation and the development of various diseases. Cell cycle checkpoints are well regulated by both activators and inhibitors to avoid cell growth disorder and cancerogenesis. Cyclin dependent kinase 20 (CDK20) and p21Cip1/Waf1 are widely recognized as key regulators of cell cycle checkpoints controlling cell proliferation/growth and involving in developing multiple cancers. Emerging evidence demonstrates that these two cell cycle regulators also play an essential role in promoting cell survival independent of the cell cycle, particularly in those cells with a limited capability of proliferation, such as cardiomyocytes. These findings bring new insights into understanding cytoprotection in these tissues. Here, we summarize the new progress of the studies on these two molecules in regulating cell cycle/growth, and their new roles in cell survival by inhibiting various cell death mechanisms. We also outline their potential implications in cancerogenesis and protection in heart diseases. This information renews the knowledge in molecular natures and cellular functions of these regulators, leading to a better understanding of the pathogenesis of the associated diseases and the discovery of new therapeutic strategies.  相似文献   
7.
BackgroundThe last decade has noticed the expansion of green materials, which aims to reduce the human impact on the environment. Green polymers are clearly tendency subdivision of this stream and numerous bio-sourced plastics have been developed. Recent research has further focused on the development of new bio-based materials such as edible/biodegradable films for food products.Scope and approachFish gelatin (FG), a protein with recreatable reserve, biodegradability, and processability, has a remarkable potential in bio-packaging. However, there have been noticeable issues concerning the use of FG as packing material, including its low mechanical strength, poor moisture stability, and poor water barrier properties. This paper aims to review the state-of-the-art in development of FG-based films and highlights how they play a crucial role in modifying the properties of such films. Various types of nanofillers that have been included into FG to fabricate bio-nanocomposite films, such as nanoclays (montmorillonite, sepiolite), polysaccharide nanofillers (nanowhiskers/nanofibers), metal ions (silver, copper) and metal oxides nanoparticles (ZnO, TiO2) are reviewed.Key findings and conclusionsCross-linking is a promising technique to improve the performance and applicability of FG-based biomaterials, particularly respecting their water sensitivity, which hinders many of their potential uses as food contact materials. Bio-nanocomposite technology may help to make high-performance materials with extra bio-functional properties, and it is anticipated to be a dynamic research in the future. In general, more research is required to ameliorate application processes of FG films, especially physical aspects, to be suitable for bio-packaging application.  相似文献   
8.
The introduction of hydrogen into the UK natural gas main has been reviewed in terms of how materials within the gas distribution network may be affected by contact with up to 80% Natural Gas (NG)/20 mol% hydrogen blend at up to 2 barg. A range of metallic, polymeric and elastomeric materials in the gas distribution network (GDN) were assessed via a combination of literature review and targeted practical test programmes.The work considered:? The effect of hydrogen on metallic materials identified in the network.? The effect of hydrogen on polymeric materials identified in the network.? The effect of hydrogen exposure on polyethylene pipeline joining and repair techniques (squeeze-off, and socket and saddle electrofusion joints)The experimental work involved soaking materials, under pressure conditions representative of the network, in 100% hydrogen, 20% hydrogen in methane, and 100% methane. For the metal samples, the test programme involved the assessment of hydrogen uptake on the tensile properties. For the polyethylene samples, the test programme looked at the assessment of possible hydrogen absorption/desorption and its effect on electrofusion jointing.The trials concluded that the majority of metallic materials showed no significant deterioration in mechanical (tensile) properties when stored in hydrogen environments compared to those stored in analogous methane or blended gas atmospheres up to 2 barg. Polymeric materials showed no deterioration to efficiency of squeeze-off or collar electrofusion in socket or shoulder orientations following soaking in hydrogen, methane or hydrogen blends.  相似文献   
9.
Zinc (Zn) particles in alkaline electrolyte of a Zn-air battery (ZAB) are unstable and prone to corrosion. Zinc oxide (ZnO) generated on the surface of Zn particles affects the electrochemical reactions and reduces the battery efficiency. Thus, inhibiting the self-corrosion rate of Zn particles has become acritical issue for the development of these batteries. In this study, a research endeavor has been attempted by employing three types and concentrations of organic inhibitors in ZABs to constrain Zn anode corrosion. Significant analyses like polarization curve, constant current discharge, AC impedance, and dendrite growth are executed for in-depth understanding of the influences of these inhibitors. The experimental results reveal that the inhibiting efficiency of 10 wt% Sodium dodecyl benzene sulfonate surpassed polyethylene glycol 600 (PEG 600) and polysorbate 20 (Tween 20), with a maximum current density of 476.20 mA/cm2 and voltage output of 1.4 V along with discharge capacitance of 10.31 Ah for 2 hours and 8 minutes. Zn anode surface analysis exposes significant dendrite growth and elemental Zn required for passivation suppression. Nevertheless, the results are also justified by Nyquist and Bode plots. Thus, the selected inhibitor will proficiently guarantee the enhanced performance and stability of the ZABs obtained and provide enormous opportunities for its applications.  相似文献   
10.
为了从分子层面上对含能材料不同分子构型间的转变情况有一个直观认识,借助Gaussian 09软件,运用密度泛函理论(DFT),采用TS算法搜寻β-RDX→α-RDX、γ-HMX→β-HMX、ε-CL-20→β-CL-20及β-FOX-7→α-FOX-7在分子构型转变过程中的过渡态结构,确定了它们的构型转变过程;并通过计算吉布斯自由能随构型转变路径的变化,比较多态含能材料分子构型转变的难易程度。结果表明,由亚稳晶型到稳定晶型的转变首先会越过过渡态,克服自由能能垒转变为亚稳态结构,实现β-RDX→α-RDX、γ-HMX→β-HMX、ε-CL-20→β-CL-20及β-FOX-7→α-FOX-7分子构型转变分别需要克服的自由能能垒分别为5.25、22.21、9.69和10.24kJ/mol。因此,常温常压下β-RDX→α-RDX、γ-HMX→β-HMX、ε-CL-20→β-CL-20及β-FOX-7→α-FOX-7构型转变的难度大小排序为:HMX>>FOX-7>CL-20>RDX。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号