首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
工业技术   1篇
  2015年   1篇
排序方式: 共有1条查询结果,搜索用时 15 毫秒
1
1.
为了提高网络流量预测精度,针对最小二乘支持向量机LSSVM(Least Squares Support Vector Machine)参数优化问题,提出一种改进人工蜂群ABC(artificial bee colony)算法优化LSSVM的网络流量预测模型(ABC-LSSVM)。该模型根据混沌理论对网络流量时间序列进行重构,然后将网络流量预测精度作为优化目标,通过ABC算法找到最优的LSSVM参数,并建立网络流量预测模型,最后采用仿真对比实验测试模型的性能。仿真结果表明,相对于参比模型,ABC-LSSVM解决了LSSVM参数优化的难题,能够更加准确刻画网络流量复杂变化规律,提高了网络流量的预测精度。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号