首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   62篇
  国内免费   5篇
  完全免费   75篇
工业技术   142篇
  2020年   15篇
  2019年   18篇
  2018年   19篇
  2017年   13篇
  2016年   9篇
  2015年   9篇
  2014年   20篇
  2013年   13篇
  2012年   8篇
  2011年   9篇
  2010年   6篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
排序方式: 共有142条查询结果,搜索用时 31 毫秒
1.
许敏  王士同  顾鑫 《控制与决策》2014,29(1):141-146
迁移学习旨在利用大量已标签源域数据解决相关但不相同的目标域问题. 当与某领域相关的新领域出现时, 若重新标注新领域, 则样本代价昂贵, 丢弃所有旧领域数据又十分浪费. 对此, 基于SVM算法提出一种新颖的迁移学习算法—–TL-SVM, 通过使用目标域少量已标签数据和大量相关领域的旧数据来为目标域构建一个高质量的分类模型, 该方法既继承了基于经验风险最小化最大间隔SVM的优点, 又弥补了传统SVM不能进行知识迁移的缺陷. 实验结果验证了该算法的有效性.  相似文献   
2.
在脑电图( EEG)信号识别中,EEG信号的采样环境、病人状态的多样性导致分类器训练所用的源域与分类器测试所用的目标域不匹配,分类器在目标域上表现不佳。为此,引入邻域适应策略,提出一种基于子空间相似度的改进主成分分析特征提取方法( SSM-PCA),在选择主成分时,考虑源域和目标域数据的几何和统计特性,并结合迁移学习分类器大间隔投射迁移支持向量机( LMPROJ),给出以SSM-PCA为基础的LMPROJ分类识别方法。实验结果表明,与结合PCA特征抽取技术和K近邻分类器实现的识别方法相比,该方法在识别正确率方面得到较大提升。  相似文献   
3.
针对目标域训练样本数量较少无法建立优质分类模型的问题,提出一种在迁移框架下基于集成bagging算法的跨领域分类方法。引入源域的数据并对其进行筛选,对混合数据集进行学习,建立基于集成bagging算法的分类模型,投票得出预测结果。仿真对比结果表明,采用基于贝叶斯个体分类器的集成bagging算法能够优化源域的迁移,提升目标域的分类准确率及泛化性能。分析源域的噪音数据数量,其结果表明,该算法可以部分规避负迁移。  相似文献   
4.
传统机器学习面临一个难题,即当训练数据与测试数据不再服从相同分布时,由训练集得到的分类器无法对测试集文本准确分类.针对该问题,根据迁移学习原理,在源领域和目标领域的交集特征中,依据改进的特征分布相似度进行特征加权;在非交集特征中,引入语义近似度和新提出的逆文本类别指数(TF-ICF),对特征在源领域内进行加权计算,充分利用大量已标记的源领域数据和少量已标记的目标领域数据获得所需特征,以便快速构建分类器.在文本数据集20Newsgroups和非文本数据集UCI中的实验结果表明,基于分布和逆文本类别指数的特征迁移加权算法能够在保证精度的前提下对特征快速迁移并加权.  相似文献   
5.
乙烯裂解炉通常以石油分馏产品为原料,并在高温条件下使长链分子的烃断裂成各种短链的气态烃和少量液态烃,从而获得乙烯、丙烯等烯烃及其他产品。建立这些主要产品的产率模型对裂解炉的先进控制、操作优化等任务在理论和实际上都具有重要意义。尽管在不同裂解原料、不同炉型的裂解炉状况下产品收率均存在差异,但由于裂解炉运行具有半连续性、周期性特征,裂解温度、停留时间及烃分压等因素对裂解产率的影响具有共性,因此为减小建模过程中典型样本采集等成本,有效利用历史数据提高建模精度,有效利用这些不同运行过程中存在的相似性,辅以迁移学习算法实现不同工况下裂解产率的快速建模。相比较以前的研究,此建模方法在少量新数据的情况下充分挖掘了历史数据中包含的信息。最后,以某乙烯厂为研究实例进行裂解产率建模,结果显示能够获得较好的产率预测精度,验证了该建模方法的有效性。  相似文献   
6.
迁移学习是研究如何利用大量的源领域标记数据,帮助少量标记甚至无标记的相关领域来解决特征稀疏问题的一种方法。针对迁移学习的研究大多只是从特征项表层对数据进行分析并没有考虑到源领域与目标领域之间的语义相关性问题,提出一种基于潜在语义分析的迁移学习方法。通过实验表明,本文算法可以较大提高分类器的精确度。  相似文献   
7.
为了解决包含不确定信息的分类学习问题,提出一种新的适用于不确定类标签数据的迁移支持向量机。该方法基于结构风险最小化模型,同时将源领域中所学知识、领域间的共享数据、目标领域中已标定的和不确定的数据纳入学习框架中,进而实现了源领域和目标领域的知识迁移。在多种真实数据集上的实验结果表明了所提出方法的有效性。  相似文献   
8.
行人检测是计算机视觉的研究热点和难点,近年来基于机器学习的行人检测技术取得了长足的进步,但由于不同场景的数据分布存在差异,已有检测器在新场景下的行人检测性能出现显著下降。为了避免繁琐的人工标注,充分利用原有检测器和标注样本,基于迁移学习的行人检测研究受到越来越多的关注。对其中涉及到的样本获取、迁移学习机制等关键技术进行综述,并从多个角度对现有方法进行分析和比较,最后对该技术的未来进行展望。  相似文献   
9.
传统上下文在分类研究中通常存在失真和有效性等问题。引入研究对象领域的相似领域作为上下文,借助迁移学习理论,使用结构化相似性学习方法构建研究对象领域和其相似领域间的低维共享特征,提出一种基于相似领域共享特征的分类学习模型。实验以QQ空间的个性化设置数据作为上下文,对用户电子商务网站页面的风格偏好进行分类,验证了所提模型的可行性和有效性。  相似文献   
10.
脑电图(electroencephalogram,EEG)信号智能识别是癫痫病检测的重要手段。传统的智能识别方法在进行检测时,都假定智能模型训练采用的训练样本集和测试样本集满足同一分布特征,但在实际应用时,此假设条件过于苛刻,当训练和测试数据对应的场景有一定漂移时传统方法不再适用。针对上述情况,将近年来广受关注的对分布差异性场景具备较好性能的迁移学习方法引入到脑电图识别中,使得最终所得的模型对训练和测试数据的分布要求较之传统方法得到进一步放松,扩大了算法的适应场景,实现了在数据漂移场景下对癫痫EEG信号的自适应识别。实验表明,基于迁移学习的方法比传统方法具有更好的适应性。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号