首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2577篇
  国内免费   114篇
  完全免费   787篇
工业技术   3478篇
  2020年   2篇
  2019年   9篇
  2018年   32篇
  2017年   59篇
  2016年   71篇
  2015年   138篇
  2014年   264篇
  2013年   253篇
  2012年   351篇
  2011年   395篇
  2010年   387篇
  2009年   436篇
  2008年   353篇
  2007年   300篇
  2006年   178篇
  2005年   118篇
  2004年   66篇
  2003年   49篇
  2002年   11篇
  2001年   5篇
  2000年   1篇
排序方式: 共有3478条查询结果,搜索用时 46 毫秒
1.
基于混合优化算法的正交多相码的设计   总被引:1,自引:0,他引:1  
姚铭君  袁伟明  邢文革 《现代雷达》2007,29(7):55-57,60
通过结合模拟退火算法的概率接受准则和蚁群算法的并行搜索,提出了一种有效的混合优化算法,设计出了具有良好自相关和互相关性能的正交信号组。混合算法弥补了模拟退火算法的搜索效率低和蚁群算法的容易陷入局部最小值的缺点,提高了全局搜索的能力。仿真结果表明,在搜索最优正交多相码方面该混合优化算法优于其他搜索算法。  相似文献   
2.
基于蚁群算法的配电网网络重构   总被引:1,自引:1,他引:0  
针对配电网网络重构问题,在考虑配电网电压稳定的前提下,提出了降低配电网网损的目标函数,利用蚁群算法正反馈的特性,将其应用于配电网重构中,并设置中心控制蚂蚁搜索当前最优解作为各条边信息素更新依据。为满足配电网辐射状结构要求,结合P rim算法,使蚂蚁一次遍历对应一个辐射网形,即一个有效的开关组合,大幅度缩小了问题的解空间。实例证明采用的蚁群算法可以得到较文献[1]网损更小的配电网重构方案,且重构后的系统在处理负荷增大问题上较重构前系统有更好的调控能力,系统稳定性得到提高。  相似文献   
3.
基于熵的小生境蚁群算法及其应用   总被引:1,自引:0,他引:1  
为克服基本蚁群算法易“早熟“的缺陷,将小生境算法和信息熵相结合,提出了基于信息熵的小生境蚁群算法。该算法采用小生境算法对蚁群算法的后期进行局部搜索并以信息熵作为开始和结束的判断依据。求解旅行商问题及房地产投资组合优化问题的结果表明其优于基本蚁群算法,该算法具有广阔的应用前景。  相似文献   
4.
回归蚁群算法   总被引:3,自引:1,他引:2  
针对基本蚁群算法在收敛速度和求解精度方面的不足,提出一种回归蚁群算法.通过外加牵引力使得蚂蚁按照城市的整体分布规律寻优,增加了算法的全局收敛性.并通过圈地算法,减少了局部搜索的计算量.多个旅行商问题的仿真结果验证了该方法的可行性和高效性.  相似文献   
5.
自适应PID控制技术综述   总被引:1,自引:0,他引:1  
自适应PID控制与智能PID控制是近年来的研究热点,文中综述了几种应用于工业现场卓有成效的PID控制器的构成方式及应用特点,并对智能PID控制的研究新成果作了简要介绍.  相似文献   
6.
智能优化算法求解TSP 问题   总被引:39,自引:0,他引:39  
TSP(旅行商)问题代表组合优化问题,具有很强的工程背景和实际应用价值,但至今尚未找到非常有效的求解方法.为此,讨论了最近研究比较热门的使用各种智能优化算法(蚁群算法、遗传算法、模拟退火算法、禁忌搜索算法、Hopfield神经网络、粒子群优化算法、免疫算法等)求解TSP问题的研究进展,指出了各种方法的优缺点和改进策略.最后总结并提出了智能优化算法求解TSP问题的未来研究方向和建议.  相似文献   
7.
一种进化聚类学习新方法   总被引:30,自引:6,他引:24  
根据人类进行聚类判断所遵循的原则,模拟蚂蚁寻找食物源的行为,该文提出了一种基于蚁群的聚类学习新方法。该方法可以最终获得全局最优解,并且具有本质并行性、计算效率高、聚类学习能力强等优点。  相似文献   
8.
基于蚁群算法的神经网络配电网故障选线方法   总被引:1,自引:0,他引:1       下载免费PDF全文
为了克服基于神经网络的故障选线方法收敛速度慢、易于陷入局部极小点的缺点,提出了蚁群算法和神经网络相结合的故障选线方法。利用ATP-EMTP做单相接地仿真试验,得到各线路的零序电流信号,通过小波变换和傅里叶变换提取其中的故障特征作为神经网络的输入。利用蚁群算法对神经网络进行训练,完成训练的神经网络模型即可实现故障选线。仿真结果表明,该方法训练速度快、误判率低。  相似文献   
9.
动态分阶段蚁群算法及其收敛性分析   总被引:1,自引:0,他引:1  
为了提高蚁群算法的收敛速度和求解精度,根据仿生优化算法在不同阶段的特点,提出一种改进的蚁群算法.该算法对参数和选择策略进行了分阶段设计,而且参数的分阶段是根据寻优状态动态划分的.通过对蚁群系统马尔科夫过程进行分析,证明了该算法的全局收敛性.针对典型的TSP问题进行仿真对比实验,验证了该算法在速度和精度方面优于传统蚁群算法.  相似文献   
10.
针对蚁群算法在优化网络权值过程中存在搜索速度慢和精确度的问题,将梯度下降法作为优化算子嵌入蚁群神经网络,提出了一种新型混合蚁群神经网络,并根据花岗岩的高应变率动态实验,构建了一种动载高应变率作用下花岗岩本构关系分析的蚁群智能模型,其拟合结果与实际情况吻合,对于研究在高应变率下岩石动力学性能具有借鉴意义。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号