首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1135篇
  国内免费   53篇
  完全免费   318篇
工业技术   1506篇
  2019年   6篇
  2018年   19篇
  2017年   30篇
  2016年   53篇
  2015年   90篇
  2014年   156篇
  2013年   131篇
  2012年   181篇
  2011年   190篇
  2010年   178篇
  2009年   161篇
  2008年   131篇
  2007年   106篇
  2006年   46篇
  2005年   17篇
  2004年   9篇
  2003年   1篇
  2002年   1篇
排序方式: 共有1506条查询结果,搜索用时 62 毫秒
1.
一种稀疏最小二乘支持向量分类机   总被引:1,自引:0,他引:1  
一般的支持向量分类机需要求解二次规划问题,最小二乘支持向量机只需求解一个线性方程组,但其缺乏稀疏性.为了改进最小二乘支持向量分类机,本文结合中心距离比值及增量学习的思想提出一种基于预选、筛选支持向量的稀疏最小二乘支持向量机.该方法既能弥补最小二乘向量机的稀疏性,减少计算机的存储量和计算量,加快最小二乘支持向量机的训练速度和决策速度,又能对非均衡训练数据造成的分类面的偏移进行纠正,还不影响最小二乘支持向量机的分类能力.3组实验结果也证实了这一点.  相似文献   
2.
对时序数据建模与辨识技术进行了分析,提出了使用鲁棒最小二乘支持向量机(LS-SVM)算法建立自回归移动平均(ARMA)时序预测模型。该模型是在LS-SVM的约束条件中考虑了鲁棒特性和时序模型参数,使之在求解的过程中对孤立点与噪声不敏感,并且能准确地辨识时序模型参数。考虑到电机振动故障诊断的输入输出数据集间存在着复杂非线性时序上的关系,通过用基于鲁棒LS-SVM的ARMA模型预报电机的振动值,从而预测电机振动故障。实验表明该模型在对非线性时间序列预测精度和稳定性上具有明显的优越性,为确保电机正常运行创造了良好条件。  相似文献   
3.
稀疏最小二乘支持向量机   总被引:4,自引:0,他引:4  
针对大规模数据集的回归和分类问题,改进了最小二乘支持向量机.以再生核希尔伯特空间中的线性分析为基础,把样本集映射到再生空间中,然后张成再生空间的一个线性子空间,并求出这个子空间的基.利用基线性表示子空间中的其他元素,减小了求解矩阵的维数,通过求解规模相对较小的线性方程组完成对支持向量机的训练.采用该方法对较大规模的数据样本进行了回归和分类仿真试验,并与普通的最小二乘支持向量机进行比较.结果表明,采用该方法解决复杂非线性函数的回归和分类问题,不但可以得到稀疏解,而且计算速度比普通最小二乘支持向量机提高了约20%.  相似文献   
4.
支持向量机α阶逆系统控制——连续非线性系统   总被引:1,自引:0,他引:1  
针对传统逆系统方法中逆模型难以建立的问题,提出了连续非线性系统基于最小二乘支持向量机(LS-SVM)α阶的逆系统控制方法.该方法用具有径向基核函数(RBF)的LS-SVM,离线建立被控对象的静态非线性逆模型.由静态非线性逆模型外加若干表征非线性动态特性的积分器, 构成了连续非线性系统的α阶逆系统.将得到的LS-SVM α阶逆系统串连在原系统之前,得到基本上线性化的伪线性系统,进而将复杂的非线性问题转化为线性问题.仿真结果表明,在没有被控对象先验知识的情况下,利用该方法能准确地建立连续非线性系统的逆模型.基于SVM的α阶逆系统方法适应于较一般的连续非线性系统,且具有良好的控制性能.  相似文献   
5.
基于12电极电容层析成像(ECT)和最小二乘支持向量机(LS-SVM),提出了一种油气两相流空隙率在线测量的新方法.该方法运用快速的线性反投影算法重建两相流截面图像,结合模糊模式识别技术辨识流型.把ECT电容传感器得到的66个电容测量值作为空隙率测量模型的输入,利用LS-SVM建立了针对不同截面流型的空隙率测量模型.在实际测量时,首先辨识流型,然后选择与流型相对应的空隙率测量模型计算获得空隙率.该方法省去了采用传统ECT方法测量空隙率时复杂的图像重建过程,提高了空隙率测量的实时性.实验结果表明该测量方法是有效的.  相似文献   
6.
为了对分类最小二乘支持向量机实施有效的稀疏化,以提高分类速率,采用分类相关分析算法,按序提取样本核矩阵的全部分类相关成分,并依据样本核矩阵各列与分类相关成分的相关性,对训练集所有个体按分类的重要性排序,进而可选取最重要的部分个体作为支持向量,并将其余非支持向量的信息转移至支持向量,以提高支持向量的分类表达能力.由此构建一种新的稀疏型最小二乘支持向量机CS LSSVM,并将其应用于多个模式分类的实际问题.测试结果表明,CS LSSVM稀疏性很强,且保持了标准LSSVM的分类性能,还可直接适用于多类问题.  相似文献   
7.
为了对分类最小二乘支持向量机实施有效的稀疏化,以提高分类速率,采用分类相关分析算法,按序提取样本核矩阵的全部分类相关成分,并依据样本核矩阵各列与分类相关成分的相关性,对训练集所有个体按分类的重要性排序,进而可选取最重要的部分个体作为支持向量,并将其余非支持向量的信息转移至支持向量,以提高支持向量的分类表达能力.由此构建一种新的稀疏型最小二乘支持向量机CS LSSVM,并将其应用于多个模式分类的实际问题.测试结果表明,CS LSSVM稀疏性很强,且保持了标准LSSVM的分类性能,还可直接适用于多类问题.  相似文献   
8.
刘毅  王海清  李平 《化工学报》2007,58(11):2846-2851
当间歇生产切换于不同的工艺条件时,由于新工况下的样本一般很少,且批次间存在着不确定性(由于原材料波动或过程动态特性波动等),基于全局学习的建模方法(如最小二乘支持向量机回归,LSSVR)建立的模型泛化性能不强。将局部学习融入LSSVR中,提出一种局部LSSVR(local LSSVR, LLSSVR)的间歇过程在线建模方法。结合前一批次离线优化后的LSSVR参数,针对待预测新样本在线选择与之相关的近邻样本集并基于此进行建模。以建立青霉素发酵过程的菌体浓度为例,验证了LLSSVR算法能够从过程的第2个生产批次开始在线建立较准确的预报模型,较LSSVR有着更好的推广能力、适应性和鲁棒性。  相似文献   
9.
郭小荟  马小平 《煤炭学报》2007,32(10):1093-1097
针对选煤厂日用水量时间序列的预测问题,提出应用最小二乘支持向量机(LSSVM)这一新的机器学习方法来实现日用水量的短期预测.借鉴多层动态自适应优化算法的思想,提出最小二乘支持向量机参数优化的多层动态交叉验证法;用微熵率法求得选煤厂日用水量时间序列的最佳嵌入维数和最佳延迟参数,重构相空间,建立了基于最小二乘支持向量机的选煤厂日用水量时间序列等维信息一步预测模型.预测结果表明:基于LSSVM的预测模型的预测精度比BP神经网络预测模型的预测精度要高,能够满足选煤厂日用水量预测的需要.  相似文献   
10.
 为了避免LS-SVM算法中存在的矩阵求逆问题,提出一种改进的LS-SVM算法,即利用改进PSO算法对LS-SVM算法中线性方程组进行迭代优化求解,这样既能加快算法训练速度和节省内存,又总能得到最小二乘解,提高计算精度。将此改进算法应用到长庆气田C井目的层井段进行气层识别,并与BP神经网络算法、经典的SVM算法和传统的LS-SVM算法比较,结果表明此算法识别精度高,收敛速度快,与试气结果吻合,效果显著。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号