首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  完全免费   4篇
工业技术   4篇
  2014年   1篇
  2010年   3篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
针对复杂网络社团结构挖掘算法复杂度高的问题,提出一种基于最大节点接近度的局部社团结构挖掘算法。该算法的时间复杂度为O(kd)。为验证该方法计算的准确性和计算的速度,与一种经典的挖掘局部社团结构方法——Clauset算法进行比较。实验结果表明,该算法抽取的社团结构与Clauset算法相比基本一致,但在性能上有明显提高。  相似文献   
2.
针对复杂网络社团结构挖掘算法复杂度高的问题,提出一种基于最大节点接近度的局部社团结构挖掘算法。该算法的时间复杂度为O(kd)。为验证该方法计算的准确性和计算的速度,与一种经典的挖掘局部社团结构方法——Clauset算法进行比较。实验结果表明,该算法抽取的社团结构与Clauset算法相比基本一致,但在性能上有明显提高。  相似文献   
3.
社团划分算法是复杂网络研究中的一个热点问题.传统的复杂网络社团划分算法都必须获得全局网络的信息.随着网络规模不断增大,获得全局信息的难度随之增加;而在很多情况下只关心网络中某节点所在的局部社团.为了准确、快速地找到大规模复杂网络中的局部社团,提出了一种基于节点聚集系数性质的局部社团划分算法.该算法根据节点的连接频度,利用节点聚集系数的性质,从网络中某一待求节点开始,通过搜索邻居节点,划分该节点的社团结构.该算法只需要了解与待求节点相关的局部网络信息,在解决局部社团划分问题时其时间复杂度比传统的社团划分算法低.同时,该算法也可以应用于复杂网络全局社团结构的划分.利用该算法分别对Zachary空手道俱乐部网络和由Java开发工具包构成的软件网络图进行社团划分实验,并且分别对实验结果与对象网络的具体特征进行了对比分析.  相似文献   
4.
袁超  柴毅 《自动化学报》2014,40(5):921-934
挖掘复杂网络的社团结构对研究复杂系统具有重要的理论和实践意义.其中,相较于全局社团,局部社团的挖掘难度更大,相关文献更少.现有的局部社团挖掘算法大都精度较低、稳定性较差.本文提出了一个有效的局部社团挖掘算法,称为内外夹推法(Shell interception and core expansion,SICE).算法有两个创新之处:1)将节点相似度模型引入到局部社团挖掘算法中(节点相似度模型在局部社团挖掘中较难应用),并提出了“一次一个子图”的社团扩展模式;2)提出了一种“内外夹推”的思想.这两个创新使SICE算法摆脱了缺乏网络全局信息的困扰,并解决了以往算法的一个致命缺陷,从而使算法具有很高的精度和稳定性.通过理论分析和实验比较,证明SICE算法要远好于当前的同类算法,甚至不逊色于性能较好的全局社团挖掘算法.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号