首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  完全免费   2篇
工业技术   4篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
移动边缘计算有助于实现第五代移动通信(5G)新业务超低时延、高能效、超高可靠和超高连接密度的需求,是未来5G通信的关键技术.从细粒度任务卸载算法、高可靠任务卸载与预测算法以及服务器联合资源管理策略3个方面,介绍了现有移动边缘计算技术在面向5G业务需求的工作进展,分析了未来移动边缘计算面临的挑战,并给出了未来的研究方向和研究热点.  相似文献   
2.
移动设备自身固有的一些局限性,其中包括计算能力有限,存储空间有限,环境感知能力有限以及电量有限等局限性,使得许多应用程序无法在移动设备上高效的运行.研究人员提出移动云计算技术对移动设备进行资源扩展.移动云计算主要通过任务卸载来增强移动设备的数据处理能力以及减少手机能耗.移动云计算中的任务卸载是指把移动设备的任务发送到云平台,然后由云平台处理,最后云平台向用户返回任务结果.本文首先对移动云计算中任务卸载策略和任务卸载性能的研究现状进行介绍,然后分析现有技术的局限性,最后讨论未来热点的研究方向.  相似文献   
3.
吕灵灵  杨志鹏  张磊 《控制与决策》2019,34(11):2366-2374
移动边缘计算将边缘服务器部署到无线局域网侧,将部分计算密集任务卸载到边缘云服务器,从而缩短计算服务与移动设备的距离,降低数据传输成本.考虑移动边缘计算(MEC)环境下的计算任务分配问题,通过探索用户体验敏感度的异质性,建立CPU运算周期数-数据量-价格的三元组合约模型,提出基于合约理论的计算任务分配策略,以最大化云服务商的利润为目标,同时保证移动用户的非负效益.分别讨论完整信息场景下和统计信息场景下的最优合约设计策略.仿真结果验证了所提出方案可以有效实现计算任务的卸载.  相似文献   
4.
主要研究移动用户均有多个独立任务的多用户移动云计算系统,这些移动用户将任务卸载到云端时共享通信资源。如何对所有用户的任务卸载决策和通信资源分配进行联合优化,以便使所有用户的能耗、计算量和延时降到最低是目前研究的难点。将该问题建模为NP难度的非凸的具有二次约束的二次规划(QCQP)问题,提出一种高效的近似算法进行求解,通过单独的半正定松驰(SDR)处理后,确定二元卸载决策和通信资源最优分配。采用代表最小系统成本的性能下界作为性能基准进行仿真实验,结果表明,本文算法在多种参数配置下的性能均接近最优性能。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号