首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  完全免费   1篇
工业技术   3篇
  2018年   1篇
  2011年   1篇
  2010年   1篇
排序方式: 共有3条查询结果,搜索用时 62 毫秒
1
1.
During the last two decades, mobile communication systems (such as GSM, GPRS and 3G networks), wireless broadcasting networks, wireless local area networks (WLAN or WiFi), and wireless sensor networks have been successfully developed and widely deployed through different technological routes for providing a variety of communication services in different application scenarios. While making tremendous contributions to social progress and economic growth, these heterogeneous wireless networks consume a lot of energy in achieving overlapped service coverage, and at the same time, generate strong electromagnetic interference (EMI) and radiation pollution, especially in big cities with high building density and user population. In order to guarantee the overall return on investment (ROI), improve user experience and quality of service (QoS), save energy, reduce EMI and radiation pollution, and enable the sustainable deployment of new profitable applications and services, this paper proposes a cross-network cooperation mechanism to effectively share network resources and infrastructures, and then adaptively control and match multi-network energy distribution characteristics according to actual user/service requirements in different geographic areas. Some idle or lightly-loaded Base Stations (BS or BSs) will be temporally turned off for saving energy and reducing EMI. Initial simulation results show the proposed approach can significantly improve the overall energy efficiency and QoS performance across multiple cooperative wireless networks.  相似文献   
2.
基于协同覆盖的绿色无线网络技术   总被引:1,自引:1,他引:0  
文章分别针对异构的无线网络和同构的广域与局域同覆盖无线网络的场景,研究基于协同覆盖的绿色网络技术。该技术能通过网络间的协同以及小区间的协同,减轻重复覆盖所带来的能效比降低问题。仿真结果表明,文章提出的基于协同覆盖的绿色无线网络技术在系统能效比以及用户接入成功率方面有较明显的增益。  相似文献   
3.
To verify the effectiveness and correctness of free modal analysis results from a Spiral bevel gear (SBG) wheel by using Finite element method (FEM), an experimental platform was constructed through the free-hanging support of the SBG wheel. The experiment used the hammer knock percussion for excitation and a three-directional acceleration sensor as signal acquisition equipment and utilized the LMS modal analysis module. The geometric model of the SBG wheel was constructed using an eight-node octagon instead of the SBG wheel outer contour. The experiment then extracted the modal parameters of the wheel using the PolyMAX method and obtained the first- and second-order natural frequencies, damping ratios, and mode shapes of the SBG wheel at 0-7 kHz during the experimental modal test. The results of the experimental test were compared with those of the FEM free modal analysis. The first- and second-order natural frequency error rates by FEM were 0.25 % and 0.45 %, respectively. The experimental modal test result verified the rationality of the model by FEM, thus showing that the result of modal analysis by FEM is reliable and providing a basis for the dynamic characteristic analysis of SBG.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号