首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  完全免费   3篇
工业技术   4篇
  2016年   3篇
  2013年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
针对高分辨率遥感图像的边缘特征,提出了一种基于频谱分析的图像边缘检测方法.首先对南京市主城区典型地物QuickBird图像进行傅里叶变换,分析频谱能量的角向分布特征,对最大角向能量分布曲线求一阶导数,将其峰值作为边缘检测滤波器的中心频率.通过设计方向Gabor滤波器进行频域滤波,达到图像边缘特征检测的目的.结果表明,进行频谱分析能够确定图像边缘特征的最佳截止频率,从而为高分辨率遥感图像边缘特征检测提供一种新方法.  相似文献   
2.
传统的协同过滤算法广泛应用于推荐系统领域,但该算法仍存在用户冷启动和数据稀疏性问题,造成算法的推荐质量较差。对此,提出一种基于用户多属性与兴趣的协同过滤算法AICF(Attributes and Interests Collaborative Filtering)。首先通过对多种用户属性分配权重计算出用户多属性相似度。其次利用改进的Slope One算法填充用户-项目评分矩阵,然后计算基于隐性标签的用户兴趣相似度。最后基于两种相似度的组合进行推荐。实验结果表明,AICF算法不仅明显提高了推荐结果的准确性,同时也解决了用户冷启动和数据稀疏性问题。  相似文献   
3.
朴素贝叶斯算法是分类算法中最经典、最有影响的算法之一,但仍然存在一些不足之处.针对该算法中下溢问题,对算法基本公式进行了优化改进.针对NB算法中准确率问题,结合类别核心词思想和改进后的TFIDF算法,提出了一种基于类别核心词和改进型TFIDF的朴素贝叶斯CIT-NB算法.将改进后的算法应用于新闻数据集文本分类,实验结果表明,CIT-NB算法的分类性能明显优于原始朴素贝叶斯算法和基于TFIDF的分类算法.  相似文献   
4.
传统串行贝叶斯算法在对大规模数据进行分类时,性能较低下.为此,在TFIDF(词频-逆向文件频率)特征加权基础上,提出ICF(逆类别因子)类别加权因子,对传统贝叶斯分类模型进行改进.利用MapReduce并行计算框架在处理海量数据方面的优势,设计并实现了一种对TFIDF改进的分布式朴素贝叶斯文本分类算法.实验结果表明,与传统分布式朴素贝叶斯算法和TFIDF加权的分布式朴素贝叶斯算法相比,改进后的分类算法在查准率、查全率、F-measure等方面都有了较大提高.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号