首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   99篇
  免费   40篇
  国内免费   7篇
地球科学   146篇
  2023年   8篇
  2022年   10篇
  2021年   9篇
  2020年   11篇
  2019年   5篇
  2018年   12篇
  2017年   9篇
  2016年   4篇
  2015年   6篇
  2014年   2篇
  2013年   6篇
  2012年   6篇
  2011年   6篇
  2010年   9篇
  2009年   5篇
  2008年   16篇
  2007年   5篇
  2006年   6篇
  2005年   1篇
  2004年   2篇
  2003年   1篇
  2002年   2篇
  2001年   4篇
  1995年   1篇
排序方式: 共有146条查询结果,搜索用时 31 毫秒
91.
柯坪地区下志留统储层性质及控制因素   总被引:3,自引:0,他引:3  
野外露头浅钻取样分析发现,柯坪地区志留系下统柯坪塔格组的储层性质与塔北及塔中地区差别较大。柯坪地区的砂岩储层以粉细粒岩屑砂岩为主,处于晚成岩A2期,孔隙度主要为2%~6%,平均4.47%,渗透率主要为(0.01~0.1)×10-3μm2,平均0.06×10-3μm2,属于特低孔特低渗储层,而塔北及塔中地区以低孔低渗和中孔中渗为主。研究表明柯坪地区成岩压实、石英次生加大是储层物性的主控因素,储层经历长期深埋藏和短期浅埋藏,使成岩压实减孔率达30.4%;胶结作用所减少的孔隙量一般为1.5%~8%,致密胶结段可达10%~11%,石英次生加大所减少的孔隙量一般2%~4%,致密胶结段可达6%~8%;溶蚀作用及次生裂缝对储层物性改善不大,一般增孔量4%左右;成岩中后期强烈挤压构造运动对储层性质有重要影响。储层演化史表明晚二叠世、晚白垩世—早第三纪是油气聚集成藏期,随后遭后期构造运动破坏,油气逸散或发生氧化作用,柯坪塔格组含沥青砂岩即是这一过程的产物。  相似文献   
92.
利用2005—2018年辽宁沿海高速公路沿线气象站点观测资料和NCEP再分析资料,对辽宁沿海高速公路浓雾气候特征及其与各相关气象要素的关系进行分析,并探讨了利于浓雾发生的环流特征和影响因子。结果表明:辽宁沿海高速公路年均浓雾日数由西至东呈现高—低—高的分布特点,同时,辽东沿海高速公路沿线各站年均浓雾日数差异较小,且存在明显的自东向西的下降趋势;辽西沿线高速公路各站差异最大,受到局地的影响最强。沿海高速公路年均浓雾日数具有明显的月变化与季节变化特征,全年有两个浓雾出现的集中时段,分别为2—3月和10—11月;秋季浓雾日数占全年的比率最高。秋季沿海高速公路浓雾以0—200 m的强浓雾为主;温度为10—15℃,相对湿度大于98%,风速为0—3 m·s-1,风向为偏东北风时,浓雾出现的概率最大。辽宁秋季沿海地区受副热带高压影响较小,受东亚大槽等中高纬度纬向环流和极涡的影响较大,纬向环流和极涡越强(弱),辽宁沿海地区浓雾日数越多(少);辽宁沿海地区浓雾的水汽一部分来源于辽宁东部山区,一部分来源于渤海、黄海北部。辽宁沿海地区秋季浓雾并非以海雾为主,而以辐射雾、锋面雾居多,同时辽东沿海地区有来自辽东山区的平流雾。  相似文献   
93.
孙丽 《测绘通报》2023,(1):154-157+178
常用的激光标定评价方法是在检校场用同名特征点的距离误差衡量标定质量,选点的误差对高精度激光的标定评测不可忽略。本文提出了利用同名面评测激光的标定精度的方法,用控制点和静态激光建设精度较高的面检校场作为真值,从待评测激光点云中提取同名面,统计被评测激光的同名面和真值面之间的误差,评价激光的标定精度。该激光标定精度评测方法已经应用于高德高精采集车,并投产两年多,点云资料矢量化出的高精地图要素中相对精度优于10 cm的占比达到了98%。  相似文献   
94.
利用紫坪铺水库2004~2007年记录的实际地震数据,通过比较多种滤波方法,发展出一种既能有效滤除地震数据中本底噪音、又对有效信号损伤较小的比值滤波方法。对去噪后的水库诱发地震和构造地震数据,利用小波变换方法,分别进行时频分析获得两类地震的时频谱,并提取可以反映地震发生前后能量分布和聚集情况的时频属性,最后根据各个属性的响应效果,组合得到新的属性。将时频谱与时频属性相结合,总结归纳紫坪铺水库诱发地震与构造地震波谱时频特征的差异性,为地震监测分析提供基础依据。  相似文献   
95.
地震波传播过程中,质点的振动不仅包括三个独立的平移部分,还包括三个独立的旋转部分.本文基于一阶速度-应力弹性波方程,采用分裂完全匹配层(SPML)的吸收边界条件,推导了时间导数二阶精度和空间导数高阶精度的交错网格有限差分格式的弹性波速度与应力各分量计算公式,模拟了各向同性介质中均匀模型和层状模型下的六分量波场,并对二维各向同性层状模型下的三个分量地震记录做高分辨率线性拉东变换得到各自的频散能谱.数值模拟分析结果表明:(1)旋转分量的能量要比平动分量弱的多;(2)在平动分量上,面波能量强,频率低,反射P波能量较强,反射S波能量稍弱;在旋转分量上,反射P波能量很弱,S波能量强;(3)与平动分量相比,旋转分量的频散能谱效果更好,能看到基阶和完整的高阶面波,即旋转分量能反映更多的地下介质信息.  相似文献   
96.
东北冻土区积雪深度时空变化遥感分析   总被引:5,自引:5,他引:0  
积雪作为冰冻圈的重要组成部分,对地面有保温作用,在消融时又吸收热量降低地面温度,影响冻土发育,对气候的变化十分敏感。利用微波遥感数据1979-2014年逐日中国雪深长时间序列数据集,采用GIS空间分析和地学统计方法,分析了东北冻土区积雪深度的时空变化规律及其异常变化。结果表明,东北冻土区多年平均雪深为2.92 cm,年平均雪深最高值出现在岛状多年冻土区,最低值出现在季节冻土区。东北冻土区年平均积雪深度变化以减少为主,占区域面积的39.77%,减少速率为0.07 cm·(10a)-1。东北冻土区年平均积雪深度在1986年发生突变,开始出现减少的趋势,这与气温突变年份较为吻合。受地形和气温变化影响,年平均积雪深度减少的敏感区域主要发生在岛状多年冻土区。气温是影响东北冻土区年平均积雪深度变化最主要的因素,降水量、风速、湿度、日照时数对积雪深度均有影响。季节冻土区积雪深度对气候的敏感性要大于多年冻土区。  相似文献   
97.
探空仪湿度测量误差研究现状及其对云识别的影响   总被引:2,自引:1,他引:1  
探空湿度观测是获取湿度资料的重要手段,探空仪湿度传感器的性能会直接影响湿度的测量结果并对基于探空湿度资料识别的云层准确性造成影响。为更好地了解目前国内外探空仪湿度测量的准确性,回顾了大量国内外研究成果,简要介绍了国内外探空仪的类型及湿度传感器性能,归纳了探空仪湿度测量误差并探讨了湿度测量误差对云识别的影响。分析发现,探空仪湿度测量误差来源多样,是多种因素综合作用的结果。一般而言,在对流层低层温度较高的条件下,湿度测量的结果较为准确,云层识别较为可靠;但湿度传感器在低温条件下响应时间变长、灵敏度下降,导致云底的识别准确性要高于云顶,而识别的中、高云偏少;而高湿条件下,测湿元件易被沾湿,导致湿度异常偏高,从而使得识别的云层偏厚;探空仪普遍存在湿度异常偏低的情况,尤其是湿度较高的测站,从而导致云层漏判。  相似文献   
98.
根据国家台网中心自动地震速报系统在云南漾濞和青海玛多2个地区的台网监测能力,选取2个地区2021年5月18—29日的地震序列,对自动地震速报系统进行性能分析。国家台网中心自动地震速报系统基本实现1min内的单路自动地震速报信息初次产出,根据地震台网密度的不同,产出时间从30~60s不等。与地震编目结果相比,云南漾濞地震序列震中位置偏差较小,青海玛多地震序列震中位置偏差较大,2个地震序列震级偏差不大。青海玛多地震序列震中位置偏差较大的原因是该区域台站稀少且空隙角较大。自动地震速报系统存在少量的漏报地震,与系统定位时信噪比较低、台站空隙角较大及多个地震混叠在一起有关。  相似文献   
99.
北京时间2022年6月10日1时28分四川阿坝州马尔康市(32.25°N,101.82°E)发生6.0级地震。中国地震台网中心于震后3min发布自动速报结果、震后约7min发布正式速报结果,同时联合多家单位启动地震应急产品产出工作,共产出震源参数、历史地震、地质构造、震源机制、余震精定位、推测烈度和震源破裂过程等9类应急产品,对于发震断层的孕震构造给出了初步约束。结果显示,本次地震发生在松岗断裂附近,位于青藏高原巴颜喀拉块体东部的阿坝次级地块;震源机制解表明该地震是一次走滑型事件,余震与主震性质整体一致。余震烈度速报推测极震区烈度达Ⅸ度,区域面积约70km2;Ⅷ度及以上区域面积约734km2,涉及7个乡。  相似文献   
100.
通过对TOGA-COARE期间的一组锚系仪器阵列资料的分析得出:在赤道西太平洋1°45′S,156°E.海域存在显著的半日潮频内波,它的水平波数(波长)、垂向波数、水平传播速度和垂向传播速度分别约为:3.3×10-2 km-1 (210 km),-1.6×10-3 m-1,2.0 m/s,-3.8 cm/s.波形向斜下方传播,亦即波能向斜上方传输.它在观测点西南方生成后,向东北方向传播,到达观测海区.流速矢量旋转谱水平随深度的变化呈马鞍形,低谷及深处的峰所在深度分别与南赤道流及赤道潜流的南边界所在深度大体一致.旋转椭圆主轴方位角随深度变化,在浅层(40 m处)为北偏东30°,到深处(324 m)转为东偏南14°.总体上呈东北方向,表明波来自西南方向.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号