首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9768篇
  免费   886篇
  国内免费   3489篇
环境安全   14143篇
  2024年   61篇
  2023年   213篇
  2022年   334篇
  2021年   483篇
  2020年   407篇
  2019年   428篇
  2018年   253篇
  2017年   304篇
  2016年   362篇
  2015年   490篇
  2014年   805篇
  2013年   573篇
  2012年   669篇
  2011年   729篇
  2010年   671篇
  2009年   700篇
  2008年   701篇
  2007年   770篇
  2006年   714篇
  2005年   620篇
  2004年   611篇
  2003年   591篇
  2002年   434篇
  2001年   351篇
  2000年   308篇
  1999年   257篇
  1998年   251篇
  1997年   161篇
  1996年   173篇
  1995年   188篇
  1994年   137篇
  1993年   98篇
  1992年   103篇
  1991年   68篇
  1990年   57篇
  1989年   58篇
  1988年   2篇
  1987年   4篇
  1986年   4篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
81.
城市市政污水处理厂产生的剩余污泥是一种良好的重金属生物吸附剂制备原料。以北京某市政污水处理厂产生的脱水剩余污泥为原料,采用碱改性处理方法,制备得到碱改性脱水污泥生物吸附剂,通过其对水中镉的等温吸附实验,考察其重金属吸附效能。研究结果表明:碱改性脱水污泥对水中镉的等温吸附曲线符合Langmuir等温吸附模型。碱改性处理后,脱水污泥对水中镉的最大饱和吸附容量提高了2.8倍,达0.966 mmol/g,显著高于同类型脱水污泥生物吸附剂。碱改性脱水污泥对水中镉的最大饱和吸附容量与改性过程中所使用的Na OH浓度之间的线性相关性较差,呈现一定的波动变化趋势。  相似文献   
82.
选用不同的化学除磷药剂及固液分离方式,针对膜生物反应器出水进行后置化学除磷静态试验研究。试验表明,在MBR出水平均浓度为(6.0±0.3)mg/L时,在化学药剂的最佳投药量和混凝时间的条件下,TP可以稳定达到一级A标准,去除率达到95%以上;滤液达一级A标准,氯化铝、氯化铁、聚合硫酸铁、硫酸铝最佳投加量为1.5 mol/mol,硫酸铁、聚合硫酸铝最佳投加量为3.0 mol/mol,最佳混凝时间均为10 min;滤纸和滤膜可以有效分离混凝混合液中的TP,滤液TP可稳定达一级A标准,而微网对混合液中粒径小于D10的颗粒无法分离,致使滤液TP无法达标;PAM投加后,絮体粒径显著增大,固液分离效果也相应增强。微网分离效果较投加前有了明显提高,滤液TP可稳定达到一级B标准。  相似文献   
83.
This study investigated the bacterial regrowth in drinking water distribution systems receiving finished water from an advanced drinking water treatment plant in one city in southem China. Thirteen nodes in two water supply zones with different aged pipelines were selected to monitor water temperature, dissolved oxygen (DO), chloramine residual, assimilable organic carbon (AOC), and heterotrophic plate counts (HPC). Regression and principal component analyses indicated that HPC had a strong correlation with chloramine residual. Based on Chick-Watson's Law and the Monod equation, biostability curves under different conditions were developed to achieve the goal of HPC 100 CFU/mL. The biostability curves could interpret the scenario under various AOC concentrations and predict the required chloramine residual concentration under the condition of high AOC level. The simulation was also carded out to predict the scenario with a stricter HPC goal (≤50 CFU/mL) and determine the required chloramine residual. The biological regrowth control strategy was assessed using biostability curve analysis. The results indicated that maintaining high chloramine residual concentration was the most practical way to achieve the goal of HPC ≤ 100 CFU/mL. Biostability curves could be a very useful tool for biostability control in distribution systems. This work could provide some new insights towards biostability control in real distribution systems.  相似文献   
84.
The choice of substrates with high phosphorus adsorption capacity is vital for sustainable phosphorus removal from waste water in constructed wetlands. In this study, four substrates were used: quartz sand, anthracite, shale and biological ceramsite. These substrate samples were characterized by X- ray diffractometry and scanning electron microscopy studies for their mineral components (chemical components) and surface characteristics. The dynamic experimental results revealed the following ranking order for total phosphorus (TP) removal efficiency: anthracite 〉 biological ceramsite 〉 shale 〉 quartz sand. The adsorptive removal capacities for TP using anthracite, biological ceramsite, shale and quartz sand were 85.87, 81.44, 59.65, and 55.98 mg/kg, respectively. Phosphorus desorption was also studied to analyze the substrates' adsorption efficiency in wastewater treatment as well as the substrates' ability to be reused for treatment. It was noted that the removal performance for the different forms of phosphorus was dependent on the nature of the substrate and the adsorption mechanism. A comparative analysis showed that the removal of particulate phosphorus was much easier using shale. Whereas anthracite had the highest soluble reactive phosphorus (SRP) adsorptive capacity, biological ceramsite had the highest dissolved organic phosphorus (DOP) removal capacity. Phosphorus removal by shale and biological ceramsite was mainly through chemical adsorption, precipitation or biological adsorption. On the other hand, phosphorus removal through physical adsorption (electrostatic attraction or ion exchange) was dominant in anthracite and quartz sand.  相似文献   
85.
Mechanisms of soil Pb immobilization by Bacillus subtilis DBM, a bacterial strain isolated from a heavy-metal-contaminated soil, were investigated. Adsorption and desorption experiments with living bacterial cells as well as dead cells revealed that both extracellular adsorption and intracellular accumulation were involved in the Pb2+removal from the liquid phase. Of the sequestered Pb(II), 8.5% was held by physical entrapment within the cell wall, 43.3% was held by ion-exchange, 9.7% was complexed with cell surface functional groups or precipitated on the cell surface, and 38.5% was intracellularly accumulated.Complexation of Pb2+with carboxyl, hydroxyl, carbonyl, amido, and phosphate groups was demonstrated by Fourier transform infrared spectroscopic analysis. Precipitates of Pb5(PO4)3OH, Pb5(PO4)3Cl and Pb10(PO4)6(OH)2that formed on the cell surface during the biosorption process were identified by X-ray diffraction analysis. Transmission electron microscopy–energy dispersive spectroscopic analysis confirmed the presence of the Pb(II)precipitates and that Pb(II) could be sequestered both extracellularly and intracellularly.Incubation with B. subtilis DBM significantly decreased the amount of the weak-acid-soluble Pb fraction in a heavy-metal-contaminated soil, resulting in a reduction in Pb bioavailability, but increased the amount of its organic-matter-bound fraction by 71%. The ability of B.subtilis DBM to reduce the bioavailability of soil Pb makes it potentially useful for bacteria-assisted phytostabilization of multi-heavy-metal-contaminated soil.  相似文献   
86.
Aim of the present study was to synthesize titanium dioxide nanoparticles (YiO2 NPs) from marine actinobacteria and to develop an eco-friendly azo-dye degradation method. A total of five actinobacterial isolates were isolated from Chennai marine sediments, Tamilnadu, India and analyzed for the synthesis of TiO2 NPs using titanium hydroxide. Among these, the isolate PSV 3 showed positive results for the synthesis of TiO2 NPs, which was confirmed by UV analysis. Further characterization of the synthesized TiO2 NPs was done using XRD, AFM and FI'-IR analysis. Actinobacterial crude extract and synthesized TiO2 NPs was found efficient in degrading azo dye such as Acid Red 79 (AR-79) and Acid Red 80 (AR-80). Degradation percentage was found to be 81% for AR-79, 83% for AR-80 using actinobacterial crude extract and 84% for AR-79, 85% for AR-80 using TiO2 NPs. Immobilized actinobacterial ceils showed 88% for AR-79 and 81% for AR- 80, dye degrading capacity. Degraded components were characterized by FT-IR and GC-MS analysis. The phytotoxicity test with 500 μg/mL of untreated dye showed remarkable phenotypic as well as cellular damage to Tagetes erecta plant. Comparatively no such damage was observed on plants by degraded dye components. In biotoxicity assay, treated dyes showed less toxic effect as compared to the untreated dyes.  相似文献   
87.
Bioaerosols from wastewater treatment processes are a significant subgroup of atmospheric aerosols. In the present study,airborne microorganisms generated from a wastewater treatment station(WWTS) that uses an oxidation ditch process were diminished by ventilation.Conventional sampling and detection methods combined with cloning/sequencing techniques were applied to determine the groups,concentrations,size distributions,and species diversity of airborne microorganisms before and after ventilation. There were 3021 ± 537 CFU/m3 of airborne bacteria and 926 ± 132 CFU/m3 of airborne fungi present in the WWTS bioaerosol.Results showed that the ventilation reduced airborne microorganisms significantly compared to the air in the WWTS. Over 60% of airborne bacteria and airborne fungi could be reduced after4 hr of air exchange. The highest removal(92.1% for airborne bacteria and 89.1% for fungi) was achieved for 0.65–1.1 μm sized particles. The bioaerosol particles over 4.7 μm were also reduced effectively. Large particles tended to be lost by gravitational settling and small particles were generally carried away,which led to the relatively easy reduction of bioaerosol particles0.65–1.1 μm and over 4.7 μm in size. An obvious variation occurred in the structure of the bacterial communities when ventilation was applied to control the airborne microorganisms in enclosed spaces.  相似文献   
88.
Removal of polycyclic aromatic hydrocarbons (PAHs), e.g., naphthalene, acenaphthene, phenanthrene and pyrene, from aqueous solution by raw and modified plant residues was investigated to develop low cost biosorbents for organic pollutant abatement. Bamboo wood, pine wood, pine needles and pine bark were selected as plant residues, and acid hydrolysis was used as an easily modification method. The raw and modified biosorbents were characterized by elemental analysis, Fourier transform infrared spectroscopy and scanning electron microscopy. The sorption isotherms of PAHs to raw biosorbents were apparently linear, and were dominated by a partitioning process. In comparison, the isotherms of the hydrolyzed biosorbents displayed nonlinearity, which was controlled by partitioning and the specific interaction mechanism. The sorpfion kinetic curves of PAHs to the raw and modified plant residues fit well with the pseudo second-order kinetics model. The sorption rates were faster for the raw biosorbents than the corresponding hydrolyzed biosorbents, which was attributed to the latter having more condensed domains (i.e., exposed aromatic core). By the consumption of the amorphous cellulose component under acid hydrolysis, the sorption capability of the hydrolyzed biosorbents was notably enhanced, i.e., 6-18 fold for phenanthrene, 6-8 fold for naphthalene and pyrene and 5-8 fold for acenaphthene. The sorpfion coefficients (Kd) were negatively correlated with the polarity index [(O+N)/C], and positively correlated with the aromaticity of the biosorbents. For a given biosorbent, a positive linear correlation between logKoc and logKow for different PAHs was observed. Interestingly, the linear plots of logKoc-logKow were parallel for different biosorbents. These observations suggest that the raw and modified plant residues have great potential as biosorbents to remove PAHs from wastewater.  相似文献   
89.
A novel method based on the selective pressure of particle size (particle-size cultivation method, PSCM) was developed for the cultivation and operation of aerobic granular sludge in a continuous-flow reactor, and compared with the conventional method based on the selective pressure of settling velocity (settling-velocity cultivation method, SVCM). Results indicated that aerobic granules could be cultivated in continuous operation mode by this developed method within 14 days. Although in the granulation process, under particle-size selective pressure, mixed liquor suspended solids (MLSS) in the reactor fluctuated greatly and filamentous bacteria dominated the sludge system during the initial operation days, no obvious difference in profile was found between the aerobic granules cultivated by PSCM and SVCM. Moreover, aerobic granules cultivated by PSCM presented larger diameter, lower water content and higher specific rates of nitrification, denitrifieation and phosphorus removal, but lower settling velocity. Under long term operation of more than 30 days, aerobic granules in the continuous-flow reactor could remain stable and obtain good chemical oxygen demand (COD), NH4^+-N, total nitrogen (TN) and total phosphorus (TP) removal. The results indicate that PSCM was dependent on the cultivation and maintenance of the stability of aerobic granules in continuous-flow bioreactors.  相似文献   
90.
The use of filamentous fungi in bioremediation of heavy metal contamination has been developed recently. This research aims to observe the capability of filamentous fungi isolated from forest soil for bioremediation of mercury contamination in a substrate. Six fungal strains were selected based on their capability to grow in 25 mg/L Hg2+-contaminated potato dextrose agar plates. Fungal strain KRP1 showed the highest ratio of growth diameter, 0.831, thus was chosen for further observation.Identification based on colony and cell morphology carried out by 18S rRNA analysis gave a 98%match to Aspergillus flavus strain KRP1. The fungal characteristics in mercury(Ⅱ) contamination such as range of optimum pH, optimum temperature and tolerance level were 5.5–7 and 25–35℃ and 100 mg/L respectively. The concentration of mercury in the media affected fungal growth during lag phases. The capability of the fungal strain to remove the mercury(Ⅱ) contaminant was evaluated in 100 mL sterile 10 mg/L Hg2+-contaminated potato dextrose broth media in 250 mL Erlenmeyer flasks inoculated with 108spore/mL fungal spore suspension and incubation at 30℃ for 7 days. The mercury(Ⅱ) utilization was observed for flasks shaken in a 130 r/min orbital shaker(shaken) and nonshaken flasks(static) treatments. Flasks containing contaminated media with no fungal spores were also provided as control. All treatments were done in triplicate. The strain was able to remove 97.50%and 98.73% mercury from shaken and static systems respectively. A. flavus strain KRP1 seems to have potential use in bioremediation of aqueous substrates containing mercury(Ⅱ) through a biosorption mechanism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号