首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   89篇
  免费   4篇
  国内免费   9篇
农业科学   102篇
  2024年   13篇
  2023年   44篇
  2022年   25篇
  2021年   12篇
  2020年   6篇
  2019年   2篇
排序方式: 共有102条查询结果,搜索用时 31 毫秒
81.
为解决限位栏场景下经产母猪查情难度大、过于依赖公猪试情和人工查情的问题,提出了一种基于改进YOLO v5s算法的经产母猪发情快速检测方法。首先,利用马赛克增强方式(Mosaic data augmentation, MDA)扩充数据集,以丰富数据表征;然后,利用稀疏训练(Sparse training, ST)、迭代通道剪枝(Network pruning, NP)、模型微调(Fine tune, FT)等方式重构模型,实现模型压缩与加速;最后,使用DIOU_NMS代替GIOU_NMS,以提高目标框的识别精度,确保模型轻量化后,仍保持较高的检测精度。试验表明,优化后的算法识别平均精确率可达97.8%,单幅图像平均检测时间仅1.7 ms,单帧视频平均检测时间仅6 ms。分析空怀期母猪发情期与非发情期的交互行为特征,发现母猪发情期较非发情期交互时长与频率均显著提高(P<0.001)。以20 s作为发情检测阈值时,发情检测特异性为89.1%、准确率为89.6%、灵敏度为90.0%,该方法能够实现发情母猪快速检测。  相似文献   
82.
针对鸡只呼吸困难这一早期呼吸道疾病显著症状难以检测的问题,提出一种基于YOLO v5与短时跟踪的鸡只呼吸道疾病早期检测方法。对YOLO v5算法进行锚框自适应设置与CIoU Loss (Complete IoU Loss)应用等特定优化后,用于群鸡复杂环境中准确识别鸡头目标并检测是否为张口状态。根据鸡头坐标框交并比实现鸡头目标短时跟踪并获取不同鸡头的短时动作序列,再对动作序列进行分析,判断张口-闭口组合出现的频率,动态检测是否存在鸡只呼吸困难情况。实验结果表明,改进YOLO v5算法检测鸡头目标的mAP为80.1%,张口检测准确率为67.3%,闭口检测准确率为92.8%,基于时间序列的呼吸困难行为检测方法的识别准确率为91.8%,召回率为75%,精准率为67.9%,可为群鸡养殖环境中的鸡只早期呼吸道疾病检测提供参考。  相似文献   
83.
基于YOLO v7-ECA模型的苹果幼果检测   总被引:1,自引:0,他引:1  
为实现自然环境下苹果幼果的快速准确检测,针对幼果期苹果果色与叶片颜色高度相似、体积微小、分布密集,识别难度大的问题,提出了一种融合高效通道注意力(Efficient channel attention, ECA)机制的改进YOLO v7模型(YOLO v7-ECA)。在模型的3条重参数化路径中插入ECA机制,可在不降低通道维数的前提下实现相邻通道局部跨通道交互,有效强调苹果幼果重要信息、抑制冗余无用特征,提高模型效率。采集自然环境下苹果幼果图像2 557幅作为训练样本、547幅作为验证样本、550幅作为测试样本,输入模型进行训练测试。结果表明,YOLO v7-ECA网络模型准确率为97.2%、召回率为93.6%、平均精度均值(Mean average precision, mAP)为98.2%、F1值为95.37%。与Faster R-CNN、SSD、Scaled-YOLO v4、YOLO v5、YOLO v6、YOLO v7网络模型相比,其mAP分别提高15.5、4.6、1.6、1.8、3.0、1.8个百分点,准确率分别提高49.7、0.9、18.5、1.2、0.9、1.0个百分点,...  相似文献   
84.
山羊的脸部检测对羊场的智能化管理有着重要的意义。针对实际饲养环境中,羊群存在多角度、分布随机、灵活多变、羊脸检测难度大的问题,以YOLO v5s为基础目标检测网络,提出了一种结合坐标信息的山羊脸部检测模型。首先,通过移动设备获取舍内、舍外、单头以及多头山羊的图像并构建数据集。其次,在YOLO v5s的主干网络融入坐标注意力机制,以充分利用目标的位置信息,提高遮挡区域、小目标、多视角样本的检测精度。试验结果表明,改进YOLO v5s模型的检测精确率为95.6%,召回率为83.0%,mAP0.5为90.2%,帧速率为69 f/s,模型内存占用量为13.2 MB;与YOLO v5s模型相比,检测精度提高1.3个百分点,模型所占内存空间减少1.2 MB;且模型的整体性能远优于Faster R-CNN、YOLO v4、YOLO v5s模型。此外,本文构建了不同光照和相机抖动的数据集,来进一步验证本文方法的可行性。改进后的模型可快速有效地对复杂场景下山羊的脸部进行精准检测及定位,为动物精细化养殖时目标检测识别提供了检测思路和技术支持。  相似文献   
85.
目前农业环境下的无序目标的精确计数有很高的应用需求,这种计数对其生物量、生物密度管理起到了重要的指导作用。如黑水虻幼虫目标追踪过程中,追踪对象具有高速和非线性的特征,常规算法存在追踪目标速度不足和丢失目标后的再识别困难等问题。针对以上问题,本文提出了一种改进SORT算法,通过改进卡尔曼滤波模型的方式提升目标追踪算法的快速性和准确性,提升了计数的精度。另外,针对黑水虻幼虫目标识别过程中幼虫性状的多样性和混料导致的复杂背景问题,本文通过实验对比多种深度学习网络性能选定YOLO v5s算法提取图像多维度特征,提升了目标识别精度。实验结果表明:在划线计数方面,本文提出的改进SORT算法与原模型相比,平均精度从91.36%提升到95.55%,提升4.19个百分点,通过仿真和实际应用,证明了本文模型的有效性;在目标识别方面,使用YOLO v5s模型在训练集上帧率为156f/s,mAP@0.5为99.10%,精度为90.11%,召回率为99.22%,综合性能优于其他网络。  相似文献   
86.
芽眼检测是马铃薯种薯智能切块首先要解决的问题,为实现种薯芽眼精准高效检测,提出了一种基于改进YOLO v5s的马铃薯种薯芽眼检测方法。首先通过加入CBAM注意力机制,加强对马铃薯种薯芽眼图像的特征学习和特征提取,同时弱化与芽眼相似的马铃薯种薯表面背景对检测结果的影响。其次引入加权双向特征金字塔BiFPN增加经骨干网络提取的种薯芽眼原始信息,为不同尺度特征图赋予不同权重,使得多尺度特征融合更加合理。最后替换为改进的高效解耦头Decoupled Head区分回归和分类,加快模型收敛速度,进一步提升马铃薯种薯芽眼检测性能。试验结果表明,改进YOLO v5s模型准确率、召回率和平均精度均值分别为93.3%、93.4%和95.2%;相比原始YOLO v5s模型,平均精度均值提高3.2个百分点,准确率、召回率分别提高0.9、1.7个百分点;不同模型对比分析表明,改进YOLO v5s模型与Faster R-CNN、YOLO v3、YOLO v6、YOLOX和YOLO v7等模型相比有着较大优势,平均精度均值分别提高8.4、3.1、9.0、12.9、4.4个百分点。在种薯自动切块芽眼检测试验中,改进Y...  相似文献   
87.
针对肉牛行为识别过程中,多目标骨架提取精度随目标数量增多而大幅降低的问题,提出了一种改进YOLO v3算法(Not classify RFB-YOLO v3,NC-YOLO v3),在主干网络后引入RFB(Receptive field block)扩大模型感受野,剔除分类模块提高检测效率,结合8SH(8-Stacked Hourglass)算法实现实际养殖环境下的肉牛多目标检测与骨架提取。实验为肉牛骨架设置16个关键节点形成肉牛骨架点位信息,通过对图像多尺度和多方向训练提高检测精度。针对多目标骨架提取模型检测的关键点信息进行统计分析,提出一种对肉牛站立和卧倒行为识别的方法。实验结果表明:在目标检测方面,NC-YOLO v3模型的召回率可达99.00%,精度可达97.80%,平均精度可达97.18%。与原模型相比,平均精度提高4.13个百分点,去除的网络参数量为13.81 MB;在单牛骨架提取方面,采用8层堆叠的Hourglass网络检测关键点位置,平均精度均值可达90.75%;在多牛骨架提取方面,NC-YOLO v3构建的模型相对于YOLO v3构建的模型,平均精度均值提高4.11个...  相似文献   
88.
为在有限的嵌入式设备资源下达到实时检测要求,提出一种基于改进YOLO v5的百香果轻量化检测模型(MbECA-v5)。首先,使用MobileNetV3替换主干特征提取网络,利用深度可分离卷积代替传统卷积减少模型的参数量。其次,嵌入有效通道注意力网络(ECANet)关注百香果整体,引入逐点卷积连接特征提取网络和特征融合网络,提高网络对百香果图像的特征提取能力和拟合能力。最后,运用跨域与域内多轮训练相结合的迁移学习策略提高网络检测精度。试验结果表明,改进后模型的精确率和召回率为95.3%和88.1%;平均精度均值为88.3%,较改进前提高0.2个百分点。模型计算量为6.6 GFLOPs,体积仅为6.41MB,约为改进前模型的1/2,在嵌入式设备实时检测速度为10.92f/s,约为SSD、Faster RCNN、YOLO v5s模型的14倍、39倍、1.7倍。因此,基于改进YOLO v5的轻量化模型提高了检测精度和大幅降低了计算量和模型体积,在嵌入式设备上能够高效实时地对复杂果园环境中的百香果进行检测。  相似文献   
89.
基于改进YOLO v5的自然环境下樱桃果实识别方法   总被引:1,自引:0,他引:1  
为提高对樱桃果实识别的准确率,提升果园自动采摘机器人的工作效率,使用采集到的樱桃原始图像以及其搭配不同数据增强方式得到的数据图像共1816幅建立数据集,按照8∶2将数据集划分成训练集与测试集。基于深度学习网络,利用YOLO v5模型分别对不同数据增强方式以及组合增强方式扩增后的樱桃数据集进行识别检测,结果表明离线增强与在线增强均对模型精度提升有一定的正向促进作用,其中采用离线数据增强策略能够显著且稳定的增加检测精度,在线数据增强策略能够小幅度提高检测精度,同时使用离线增强以及在线增强能够最大幅度的提升平均检测精度。针对樱桃果实之间相互遮挡以及图像中的小目标樱桃检测难等导致自然环境下樱桃果实检测精度低的问题,本文将YOLO v5的骨干网络进行改动,增添具有注意力机制的Transformer模块,Neck结构由原来的PAFPN改成可以进行双向加权融合的BiFPN,Head结构增加了浅层下采样的P2模块,提出一种基于改进YOLO v5的自然环境下樱桃果实的识别网络。实验结果表明:相比于其他已有模型以及单一结构改进后的YOLO v5模型,本文提出的综合改进模型具有更高的检测精度,使平均精度均值2提高了29个百分点。结果表明该方法有效的增强了识别过程中特征融合的效率和精度,显著地提高了樱桃果实的检测效果。同时,本文将训练好的网络模型部署到安卓(Android)平台上。该系统使用简洁,用户设备环境要求不高,具有一定的实用性,可在大田环境下对樱桃果实进行准确检测,能够很好地满足实时检测樱桃果实的需求,也为自动采摘等实际应用奠定了基础。  相似文献   
90.
实现果园机械化智能采摘是解决农村劳动力不足、降低果实采摘成本的重要途径,对果园中果实的准确识别是其关键技术。以枣为研究对象,建立最适合多品种、实用性强的枣果实成熟度识别模型,将YOLO算法引入到枣果实在自然环境下的成熟度识别中,将枣果实分为成熟果实、未熟果实和完熟果实、半红果实、未熟果实两种标注方式,建立YOLO V3、YOLO V4、YOLO V4-Tiny和Mobilenet-YOLO V4-Lite四种识别模型。研究表明YOLO算法中YOLO V3与YOLO V4-Tiny两个模型均可适用于两种标注方式,验证集mAP约为94%,证明YOLO算法能够对枣果实进行有效的成熟度识别。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号