首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   96篇
  免费   29篇
  国内免费   32篇
地球科学   157篇
  2023年   2篇
  2022年   6篇
  2021年   4篇
  2020年   7篇
  2019年   5篇
  2018年   6篇
  2017年   6篇
  2016年   6篇
  2015年   8篇
  2014年   12篇
  2013年   7篇
  2012年   5篇
  2011年   7篇
  2010年   8篇
  2009年   6篇
  2008年   8篇
  2007年   13篇
  2006年   2篇
  2005年   6篇
  2004年   3篇
  2003年   6篇
  2002年   3篇
  2001年   5篇
  2000年   2篇
  1999年   1篇
  1997年   4篇
  1996年   3篇
  1995年   1篇
  1993年   2篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
排序方式: 共有157条查询结果,搜索用时 15 毫秒
71.
天气图、卫星云图和V-3θ图结合分析不仅能清晰反映锋面天气过程,而且能够提高降水落点、降水强度及降水结束时间的预测效果.中尺度云团所表征的次涡旋和垂直顺滚流并存的区域为强降水区域.  相似文献   
72.
应用福建省66站1961—2012年逐日降水资料,基于前汛期降水定量化指标,揭示福建前汛期降水强度的多尺度特征,着重分析前汛期降水强度的低频变化特征。分析结果表明:(1)福建省前汛期降水强度在20世纪70年代中期、90年代初期发生了由强到弱和由弱到强的两次明显突变,突变点为1976年和1991年。(2)在前汛期降水偏弱的年代际背景下(20世纪70年代中期—90年代初期),前汛期降水强度年际波动相对较小;而在强的年代际背景下(20世纪60年代—70年代中期和20世纪90年代初期至今),前汛期降水强度的年际波动相对剧烈,尤其2000年以来,福建前汛期降水极端事件明显增多,持续性强降水过程多发,且强度偏强。(3)福建前汛期降水强度的季节内振荡明显,降水强度与低频变化的强度成正比,即前汛期降水强度偏强(弱)年份,其低频变化信号较(不)显著。(4)前汛期降水较强的年份有75%出现显著的低频信号,且低频周期较稳定,低频周期可分为30~60d、20~30d和10~20d;25%的年份低频周期出现明显的调整。  相似文献   
73.
全球气候变暖已是不争的事实,其导致的极端气候事件增多、增强已成为全球性趋势.近年来全球多个区域存在旱涝并存、旱涝频发的趋势.研究表明,长期旱涝频发的主要原因是全球气温升高致使水循环在时间尺度上产生更强的非均匀性以及人为排放气溶胶粒子增多,短期旱涝急转的主要原因是大气环流形势、暖湿气流输送异常的耦合作用.现阶段对于极端降...  相似文献   
74.
1961—2017年华北地区降水气候特征分析   总被引:2,自引:0,他引:2  
基于华北地区1961—2017年的均一化降水数据,从降水量、降水强度、降水日数和降水量贡献率等方面揭示了华北地区降水的气候特征。结果表明:1961—2017年华北地区年降水量以3.2 mm/10a的速率减少,其主要原因是夏季降水的减少。空间上,降水量大值区的降水趋势变化呈减少特征;降水强度呈增大趋势,降水的时间分布更加集中;小雨、暴雨和大暴雨及以上量级降水日数和贡献率呈减小趋势,而中雨和大雨则有所增加;分析各等级降水对华北地区空间分布的贡献率,小雨事件对华北地区西部降水的贡献最主要,大雨、暴雨和大暴雨对华北东南部地区降水量的贡献最为主要,这进一步解释了小雨、暴雨和大暴雨及以上量级降水量的减少造成了华北地区西部和东南部地区降水总量的下降。华北地区降水气候特征研究可为区域气候变化以及暴雨、干旱等灾害应对提供科学支撑。  相似文献   
75.
利用长江三峡库首宜昌站及库区巴东站1955—2008年分钟降水强度资料,采用广义极值分布和线性矩参数估计方法,拟合两站7个短历时(60min以内)年最大降水量概率分布,推断各历时有关重现期降水极值,计算各历时暴雨频次及年最大降水量气候倾向率,分析各历时降水广义极值分布的参数随时间变化规律。结果表明:宜昌、巴东两站7个短历时年最大降水量采用广义极值分布拟合,其效果较好;两站短历时降水平均值趋势变化不明显,而不同百分位数降水量变化趋势差异较大,其中中位数的降水量呈下降趋势,较高百分位数的降水量增加趋势显著,达20%~30%。  相似文献   
76.
研究大陆或次大陆尺度日降水长期趋势变化规律,对于检测、理解区域气候和陆地水循环对全球气候变暖的响应特征十分重要。利用美国国家气候资料中心(NCDC)和中国基准气候站、基本气象站网降水观测资料,在对该站点资料进行基本质量控制基础上,选取东亚地区619个站1951~2009年日降水数据,按照百分位阈值对降水进行分级,共分为弱、中、强、极强4个级别,用经纬度网格面积加权平均方法构建区域平均的时间序列,分析了各类降水事件长期变化趋势的时空特征。结果表明:东亚地区近59年平均总降水量表现出不显著下降趋势,降水日数没有出现趋势性变化,平均日降水强度略有减小;区域平均的年降水量、降水日数和日降水强度在中国北方大部、蒙古东部、俄罗斯远东地区南部和日本列岛多呈减少趋势,而在俄罗斯中西伯利亚南部、朝鲜半岛南部和中国长江中下游流域一般表现为增加。从季节上看,近59年东亚区域平均的冬、春季降水量、降水日数和日降水强度均呈增加趋势,而夏、秋季一般呈减少趋势,仅夏季日降水强度略有增加。降水的年内分配出现均匀化趋势。从不同级别降水事件看,近59年来东亚区域平均的各级别降水量均为下降趋势,中降水、强降水和极强降水日数也呈现下降趋势,弱降水日数表现出较明显增加;仅有全区秋季强降水量、日数减少趋势和冬季中降水量、日数增加趋势通过了显著性水平检验。分析还发现,近30年(1980~2009年)东亚地区日降水趋势变化出现了新的特征,主要表现为大部分地区降水日数呈现增加,日降水强度减少,45°N以南多数台站降水量也增加,全区降水有向非极端化方向发展趋势。  相似文献   
77.
使用反映降水强度的各时段最大降水、各量级降水等气象观测资料,应用累积距平法、M-K法和YAMA法对东莞降水强度进行初步的气候诊断分析.分析表明:从1980年代起,东莞的降水强度在6小时以内时段呈多波动变化,9小时以上时段的趋势大体上振荡下降.20分钟、30分钟、3小时的最大降水量在1980年代初发生突变,1988-1997年为谷底,其后是增强的趋势.大量级(100 mm及以上)最大降水量显著增强、增多.5分钟、20分钟、45分钟、1.5小时和12小时时段的最大降水量出现了均值的突变,其中1.5小时的突变(2002年)较强,突变之后的均值较之前增大.大量级的降水日数均值未发生突变.近年东莞的6小时以内时段的降水强度是增大的,但这种趋势变化未达到显著程度,2小时内的降水强度在2004-2005年间是个转折点,可能是一个趋势突变点.  相似文献   
78.
近五十年我国西北地区降水强度变化特征   总被引:24,自引:0,他引:24  
陈冬冬  戴永久 《大气科学》2009,33(5):923-935
鉴于近五十年来我国西北东部降水减少、西部降水增多的现象, 本文根据中国气象局信息中心提供的西北及内蒙古自治区日降水资料集, 利用筛选后的西北186个测站1958~2005年的数据, 对四季西北东、西部不同强度降水的降水量、降水日数、降水强度变化进行了分析。结果表明: 近五十年来, 中国西北地区降水以强降水为主, 较强以上强度降水占总降水日数的5%, 但其降水量占总降水量75%; 西北东部不同强度的降水都减少, 而西部只有弱降水减少, 其他强度的降水都增加, 且西北西部中等以上强度的降水增加较显著; 弱降水的总量减少, 弱降水的强度却加大, 强降水强度增强, 而极强降水强度却减弱; 降水的日数变化是降水量变化的主要原因。  相似文献   
79.
1957~2004年中国不同强度级别降水的变化趋势特征   总被引:35,自引:5,他引:30  
利用1957~2004年我国506个测站的逐日降水观测资料,分析我国8个区域年降水量、年降水频率和平均降水强度的趋势变化,根据百分位的分布,分析不同强度级别降水量和降水频率的趋势变化,以及频率和强度变化分别对降水量趋势的贡献.结果表明,年降水量、降水频率和平均降水强度均存在明显的区域变化特征.针对不同强度级别降水量和降水频率的趋势分析表明,极强降水量的趋势变化最为明显,频率变化在各强度级别均有体现,降水量的趋势变化主要由强降水量的变化引起,降水频率变化对降水量趋势的贡献远大于强度变化,趋势变化主要由频率的趋势产生.  相似文献   
80.
郑新军  李彦  徐利岗 《中国沙漠》2016,36(2):491-498
受到温度和降水季节变化的双重影响,温带大陆和季风气候地区降水中的δ18O有很强的季节动态。在中国北方由于受到强烈的温度季节变化的控制,降水中δ18O有很强的温度效应,甚至在月尺度上与温度呈显著的正相关。然而,在降水事件尺度上,特别是多雨的夏季,显著的降水量效应仍然存在。本研究结合气象数据分析了来源于GNIP的乌鲁木齐月尺度上的降水中δ18O与平均气温和降水量之间的关系。结果表明:在年尺度上,保持气温和降水频率不变,扣除两者的影响,δ18O与降水强度有显著的负相关关系(P=0.012)。温度和降水强度效应分别为(0.45±0.03)‰·℃-1(T=17.38,P<0.001)和(-0.28±0.12)‰·mm-1(T=-2.29,P=0.023)。温度和降水效应在一年四季均存在,且两者存在季节转化,分别主导了一年中不同季节降水中δ18O的动态变化。在气温剧烈变动的春季(3-5月)和秋季(9-11月),显著的温度效应占主导。而在夏季(6-8月),显著的降水强度效应(T=-2.93,P=0.006)主导了降水中δ18O的动态。尽管在冬季(12月至翌年2月)降水强度效应和温度效应很微弱也不显著,但是前者仍然大于后者。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号