首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   95篇
  免费   5篇
工业技术   100篇
  2022年   1篇
  2021年   6篇
  2020年   1篇
  2018年   2篇
  2017年   1篇
  2016年   5篇
  2015年   3篇
  2014年   6篇
  2013年   3篇
  2012年   5篇
  2011年   3篇
  2010年   2篇
  2009年   4篇
  2008年   1篇
  2007年   2篇
  2006年   1篇
  2005年   1篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   9篇
  1997年   10篇
  1996年   9篇
  1995年   2篇
  1993年   3篇
  1991年   1篇
  1990年   2篇
  1989年   3篇
  1986年   1篇
  1985年   3篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1974年   1篇
排序方式: 共有100条查询结果,搜索用时 62 毫秒
71.
We fabricated an enzyme fuel cell (EFC) device based on glucose as fuel and glucose oxidase (GOx) as biocatalyst. As a strategy to improve GOx stability, preserving at the same time the enzyme catalytic activity, we propose an immobilization procedure to entrap GOx in a polymer matrix based on Nafion and multiwalled carbon nanotubes. Circular dichroism (CD) spectra were recorded to study changes in the 3D structure of GOx that might be generated by the immobilization procedure. The comparison between the CD features of GOx immobilized and free in solution indicates that the shape of the spectra and position of peaks do not significantly change. The bioelectrocatalytic activity toward glucose oxidation of immobilized GOx was studied by cyclic voltammetry and chronoamperometry experiments. Such electrochemical experiments allow monitoring the rate of GOx-catalyzed glucose oxidation and extrapolating GOx kinetic parameters. Results demonstrate that immobilized GOx has high catalytic efficiency, due the maintaining of regular and well-ordered structure of the immobilized enzyme, as indicated by spectroscopic findings. Once investigated the electrode structure–property relationship, an EFC device was assembled using the GOx-based bioanode, and sulfonated poly ether ether ketone as electrolyte membrane. Polarization and power density curves of the complete EFC device were acquired, demonstrating the suitability of the immobilization strategy and materials to be used in EFCs.  相似文献   
72.
73.
74.
We study the probability that two independent samples drawn with replacements contain exactly i common elements. The obtained formula extends a result known as the « birthday paradox », and is used to attack signed messages in cryptography.  相似文献   
75.
During the refining process of vegetable oils (degumming), phospholipids are eliminated by thermal treatment with water (hydratable phospholipids, HP) and other degumming agents such as phosphoric acid, citric acid, or acid mixtures (nonhydratable phospholipids, NHP). Samples of pressed crude sunflower oils were degummed with water and acids, and the corresponding pellets (gums) and supernatant oils were obtained by centrifugation. During the water degumming process, a decrease of more than 98% in the phosphatidylcholine (PC) content was achieved in 5 min; phosphatidylethanolamine (PE) was the most difficult compound to be removed. Phosphatidylserine, phosphatidic acid, and phosphatidylinositol (PI) presented an intermediate behavior. The optimal contact time for quantitative extraction of the most important HP (PC, PI, and PE) in crude sunflower oils was 35 min. For acid treatments, a rapid elimination of the residual levels of PC was registered (5 min); the optimal contact times for the quantitative removal of the NHP were 35 min for phosphoric acid und acid mixture, and 25 min for citric acid. Taking into account that PE was the most difficult component to be removed, its level could be used as a monitor to evaluate the efficiency of the degumming process.  相似文献   
76.
The increase in resistant bacterial strains necessitates the identification of new antimicrobial molecules. Antimicrobial peptides (AMPs) are an attractive option because of evidence that bacteria cannot easily develop resistance to AMPs. The peptaibols, a class of naturally occurring AMPs, have shown particular promise as antimicrobial drugs, but their development has been hindered by their mechanism of action not being clearly understood. To explore how peptaibols might interact with membranes, circular dichroism, vibrational circular dichroism, linear dichroism, Raman spectroscopy, Raman optical activity, neutron reflectivity and molecular dynamics simulations have been used to study a small library of peptaibol mimics, the Aib-rich peptides. All the peptides studied quickly partitioned and oriented in membranes, and we found evidence of chiral interactions between the phospholipids and membrane-embedded peptides. The protocols presented in this paper open new ground by showing how chiro-optical spectroscopies can throw light on the mechanism of action of AMPs.  相似文献   
77.
This work reports a new procedure for low-cost Microbial Fuel Cells (MFCs) manufacture, based on the optimization of the most expensive MFC components: separator and cathode. For the first time, tubular MFC clay separators were fabricated by slip-casting, which allowed to reach the lowest thickness reported to date (1.55 mm), with a minimum cost (0.43 €·m?2). On the other hand, a novel cathode was fabricated by using commercial CuO based catalyst and Carbon Mesh (CM). The new cathode showed a power density of 110 mW m?2, more than 40% higher than other Cu based cathodes for Ceramic-MFCs (C-MFCs) studied in the literature. The proposed cell was operated for more than 6 months, with a power reduction of 29.4%, contrasting with Pt-cathodes (deactivation of almost 50% during the first month). A deep economic analysis showed a cost of 0.51 €/cell when energetic optimization and a semi-industrial production were considered, one of the lowest for C-MFCs ever reported.  相似文献   
78.
The electrochemical performance of membrane electrode assemblies (MEAs) with ultra-low platinum load (0.02 mgPt cm?2) and different compositions of Nafion/C in the catalytic layer have been investigated. The electrodes were fabricated depositing the catalytic ink, prepared with commercial catalyst (HiSPEC 2000), onto the gas diffusion layers by wet powder spraying. The MEAs were electrochemically tested using current-voltage curves and electrochemical impedance spectroscopy measurements. The experiments were carried out at 70 °C in H2/O2 and H2/air as reactant gases at 1 and 2 bar pressure and 100% of relative humidity. For all MEAs tested, power density increases when the gasses pressure is increased from 1 to 2 bar. On the other hand, power density also increased when oxygen is used instead of air as oxidant gas in cathode. The lower power density (34 mW cm?2) and power per Pt loading (0.86 kW gPt?1) corresponds to the MEA prepared without Nafion in anode and cathode catalytic layers working with hydrogen and air at 1 bar pressure as reactants gas. The MEA with 30% wt Nafion/C reached the highest power density (422 mW cm?2) and power per Pt loading (10.60 kW gPt?1) using hydrogen and oxygen at 2 bar pressure. Finally, electrode surface microstructure and cross sections of MEAs were analyzed by Scanning Electron Microscopy (SEM). Examination of the electrodes, revealed that the most uniform ionomer network surface corresponds to the electrode with 40 wt% Nafion/C, and MEA ionomer-free catalytic layer shows delamination, it leads to low electrochemical performance.  相似文献   
79.
Hull-form stochastic optimization methods are presented and evaluated for resistance reduction and operational efficiency (operability), addressing stochastic sea state and operations. The cost/benefit analysis of the optimization procedure is presented by comparison of four hierarchical problems, from stochastic most general to deterministic least general. The parent hull is a high-speed catamaran, with geometrical constraints for maximum variation of length, beam, draft, and displacement. Problem 1 is used as a benchmark for the evaluation of the other problem formulations and is defined as a multi-objective stochastic optimization for resistance and operability, considering stochastic sea state and speed, but limited to head waves. Problem 2 is a multi-objective stochastic optimization for resistance and motions at fixed sea state and speed. Problem 3 is a multi-objective deterministic optimization for resistance and motions using a single regular wave at fixed speed. Problem 4 is a single-objective deterministic optimization for calm-water resistance at fixed speed. The design optimization is based on hull-form modifications by the Karhunen-Loève expansion of a free-form deformation, URANS-based CFD simulations, regular wave approximations for irregular waves, metamodels and multi-objective particle swarm. The design optimization achieves an 8.7, 23, 53, and 10% average improvements for problems 1, 2, 3, and 4, respectively. Comparing to problem 1, problem 2, 3, 4 optimized designs have average performances 1, 2.1 and 1.7% worse, respectively. The most efficient problem, from the computational cost/benefit viewpoint, is problem 3. Nevertheless, problem 1 is needed to evaluate and compare the stochastic performance of the designs and finally assess the optimization cost/benefit.  相似文献   
80.
Warm Laser Shock Peening: New developments and process optimization   总被引:1,自引:0,他引:1  
Laser Shock Peening is a well-known technology able to enhance the fatigue life of mechanical components. Surface residual stress is induced by means of the recoil pressure of an ablated coating in a confining medium interacting with a high power density laser.Warm Laser Shock Peening is obtained by laser peening a pre-warmed workpiece surface: combining the thermal effect of the pre-heated surface and the mechanical phenomenon of the recoil shock pressure, the dynamic aging of the surface microstructure is obtained. Precipitates surrounded by dense dislocation together with residual stress considerable increase the mechanical properties of the workpiece.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号