首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   529篇
  免费   34篇
  国内免费   101篇
生物科学   664篇
  2024年   1篇
  2023年   16篇
  2022年   17篇
  2021年   14篇
  2020年   16篇
  2019年   10篇
  2018年   21篇
  2017年   20篇
  2016年   14篇
  2015年   8篇
  2014年   10篇
  2013年   40篇
  2012年   21篇
  2011年   38篇
  2010年   15篇
  2009年   20篇
  2008年   25篇
  2007年   32篇
  2006年   24篇
  2005年   30篇
  2004年   22篇
  2003年   18篇
  2002年   23篇
  2001年   12篇
  2000年   17篇
  1999年   15篇
  1998年   15篇
  1997年   21篇
  1996年   28篇
  1995年   21篇
  1994年   7篇
  1993年   15篇
  1992年   12篇
  1991年   6篇
  1990年   12篇
  1989年   8篇
  1988年   6篇
  1987年   5篇
  1986年   3篇
  1985年   2篇
  1984年   2篇
  1982年   1篇
  1977年   1篇
排序方式: 共有664条查询结果,搜索用时 15 毫秒
651.
A two-stage non-conventional bench scale biological treatment system was investigated for the treatment of the wastewater laden with ammonium nitrate. The first stage which consisted of a fixed film anoxic reactor effected denitrification of nitrate ion, while the second stage consisting of a pond effected ammonia removal. Dissimilatory denitrification requires external carbon source as an electron donor. Methanol was used as electron donor in this system. The system exhibited substantial nitrate and ammonia removal. The influent nitrate-N concentration which was on average 193.87 ± 12.68 mg/l was reduced to 5.86 ± 4.86 mg/l in the denitrification unit. There was only a marginal reduction of ammonia in the denitrification unit and most of the ammonia-N was removed in the pond. The ammonia-N was reduced from an average value of 104.87 ± 3.49 mg/l at denitrification unit inlet to 33.37 ± 8.12 mg/l at the pond outlet. There was no corresponding increase in the nitrite or nitrate concentration in proportion to ammonia reduction in the pond. The average nitrate concentration in the pond outlet was 2.4 ± 0.93 mg/l. Microbiological investigation of the system revealed the presence of significant populations of denitrifying organisms in the first stage, and denitrifying, nitrifying and algal populations in the second stage. The system also sustained wastewater of pH as low as 3.87 and appears to be very promising for larger scale industrial wastewater treatment.  相似文献   
652.
Plants of barley (Hordeum vulgare), ryegrass (Lolium perenne), pea (Pisum sativum) or turnip (Brassica campestris rapifera) were grown in pots of unfertilised soil for 10 weeks together with unplanted control pots. A wide range of soil microbiological parameters was measured on bulk soil samples 2, 4, 7 and 10 weeks after seedlings were transplanted. There was no effect of planting or differential effect of plant species upon respiration rate, microbial biomass N, or biomass of microbial predators, but these parameters all varied significantly over time. Respiration, biomass N and nematode biomass all increased, whilst protozoan biomass decreased. Microbial biomass C showed no significant temporal changes or effect of planting. There was evidence for differential plant effects on potential nitrification and denitrification. Nitrification rates were depressed, compared with the fallow, in all treatments except the pea, at some time in the experiment. Conversely denitrification rates were enhanced in all treatments, except the grass, at specific times. Denitrification rates were greater in the pea treatment than the fallow on all occasions. These results demonstrate that plants do not necessarily influence the gross microbiology of the soil, but may affect physiologically distinct sub-components of the microbial biomass.  相似文献   
653.
Abstract A nitrate reductase activity has been identified in periplasmic extracts of Paracoccus denitrificans . The enzyme is relatively insensitive to azide and does not reduce chlorate, features which distinguish it from the well-characterised membrane-associated nitrate reductase. The specific activity of the enzyme was higher in intact cells grown with butyrate rather than succinate as the sole source of carbon.  相似文献   
654.
In this work, the heterotrophic cultivation of bacterium Paracoccus denitrificans has been studied in a horizontal rotating tubular bioreactor (HRTB). After development of a microbial biofilm on the inner surface of the HRTB, conditions for one-step removal of acetate and ammonium ion were created. The effect of bioreactor process parameters [medium inflow rate (F) and bioreactor rotation speed (n)] on the bioprocess dynamics in the HRTB was studied. Nitrite and nitrogen oxides (NO and N2O) were detected as intermediates of ammonium ion degradation. The biofilm thickness and the nitrite concentration were gradually reduced with increase of bioreactor rotation speed when the medium inflow rate was in the range of 0.5–1.5 l h−1. Further increase of inflow rate (2.0–2.5 l h−1) did not have a significant effect on the biofilm thickness and nitrite concentration along the HRTB. Complete acetate consumption was observed when the inflow rate was in the range of 0.5–1.5 l h−1 at all bioreactor rotation speeds. Significant pH gradient (cca 1 pH unit) along the HRTB was only observed at the highest inflow rate (2.5 l h−1). The results have clearly shown that acetate and ammonium ion removal by P. denitificans can be successfully conducted in a HRTB as a one-step process.  相似文献   
655.
Phytomanagement of trace element-contaminated soils can reduce soil toxicity and restore soil ecological functions, including the soil gas exchange with the atmosphere. We studied the emission rate of the greenhouse gases (GHGs) CO2, CH4, and N2O; the potential CH4 oxidation; denitrification enzyme activity (DEA), and glucose mineralization of a Cu-contaminated soil amended with dolomitic limestone and compost, alone or in combination, after a 2-year phytomanagement with a mixed stand of Populus nigra, Salix viminalis, S. caprea, and Amorpha fruticosa. Soil microbial biomass and microbial community composition after analysis of the phospholipid fatty acids (PLFA) profile were determined. Phytomanagement significantly reduced Cu availability and soil toxicity, increased soil microbial biomass and glucose mineralization capacity, changed the composition of soil microbial communities, and increased the CO2 and N2O emission rates and DEA. Despite such increases, microbial communities were evolving toward less GHG emission per unit of microbial biomass than in untreated soils. Overall, the aided phytostabilization option would allow methanotrophic populations to establish in the remediated soils due to decreased soil toxicity and increased nutrient availability.  相似文献   
656.
The aims of this study were to simulate wet deposition of atmospheric nitrate (NO3?) onto forest soils and trace its fate via conversion spatially and temporally into gaseous products nitrous oxide (N2O) and dinitrogen (N2). The most likely mechanism is microbial denitrification, but an intermediate product nitrite (NO2?) can fuel N2O production via a chemical pathway involving reactions with iron and/or organic matter referred to as chemodenitrification. During summer months, we applied tracer amounts of 15N-labeled NO3? onto forest soils (pH ~ 4) at three sites in the White Mountain Region of New Hampshire, USA. We recovered 15N as N2O in 210 of 504 measurements (42%) versus 15N as N2 in 51 of 504 measurements (10%), suggesting partial microbial denitrification and/or chemodenitrification. When recovery occurred, the mean percent recovery of added 15N was just 1.1% as N2O, although N2 recovery was 33%. A site with old-growth trees had a larger percentage recovery as N2 (48%), whereas a site that had burned 100 years ago had a small percentage recovery as N2O (0.24%). The 15N composition of N2O in ambient air, collected before addition of the label, was markedly enriched in 15N. Since flux measurements were made 2 h after the addition, the results suggest that denitrification enzymes and conditions for chemodenitrification are present throughout the summer months but account for small amounts of NO3? conversion into N2O and N2.  相似文献   
657.
The denitrification process was incorporated into the IWA Anaerobic Digestion Model No. 1 (ADM1) in order to account for the effect of denitrification on the methanogenic fermentation process. The model was calibrated and optimized using previously published experimental data and kinetic parameter values obtained with a mixed, mesophilic (35°C) methanogenic culture. Model simulations were used to predict the effect of nitrate reduction on the methanogenic fermentation process in batch, semi‐continuous, and continuous flow reactors experiencing operational changes and/or system disturbances. The extended model clearly revealed the importance of substrate competition between denitrifiers and non‐denitrifiers as well as the impact of N‐oxide inhibition on process interactions between fermentation, methanogenesis, and denitrification. Biotechnol. Bioeng. 2010;105: 98–108. © 2009 Wiley Periodicals, Inc.  相似文献   
658.
Terminal restriction fragment length polymorphism (T-RFLP) and denaturing gradient gel electrophoresis (DGGE) and subsequent statistical analysis were compared with assess denitrifier community composition in agricultural soil based on the nosZ gene, encoding the nitrous oxide reductase. Analysis of binary or relative abundance-based metric and semi-metric distance matrices provided similar results for DGGE, but not for T-RFLP. Moreover, DGGE had a higher resolution than T-RFLP and binary data was better for discriminating between samples.  相似文献   
659.
We examined the distribution of mercury and selenium in fifteen tissues of striped dolphins (Stenella coeruleoalbd). The total mercury level in the mature dolphins showed differences among the tissues and was highest in the liver. The total mercury concentration in most tissues increased with age, and reached a constant level at 20 to 25 years of age. The total mercury level in the tissues was not appreciably different among mature males, pregnant females, lactating females and resting females. In the muscle of mature individuals, the total mercury level of striped dolphins collected in 1977 and 1980 was appreciably higher than that of those collected 1978 and 1979. Methylmercury showed less variation in concentration among the tissues. The ratio of methylmercury to total mercury in muscle decreased with growth after about 10 years of age when the increase of methylmercury stopped. Selenium levels in the dolphins increased with age as total mercury levels did. High correlation coefficients were found between the total mercury and selenium levels in spleen, muscle, pancreas and liver. The concentrations of total mercury in the various tissues of immature dolphins were much lower than those of mature ones.  相似文献   
660.
The use of pentachlorophenol (PCP) was banned or restricted in many countries worldwide because of its adverse influences on the ecological environment and humans. However, the potential disrupting effects of PCP on denitrifying microorganisms have warranted more analysis. In this study, the impacts of PCP on denitrification were investigated by using Paracoccus denitrificans as a model denitrifying bacterium. Compared with the control, the presences of 10 and 50 μM of PCP were found to significantly decrease the denitrification efficiencies from 98.5 to 87.2% and 68.7%, respectively. The mechanism studies showed that PCP induced the generation of reactive oxygen species, which decreased the vital enzymes activities related to glycolysis process, causing the disturbance of the metabolism of P. denitrificans utilizing carbon source (glucose) and the growth of the cell, and subsequently the generation of electron donor (NADH) for denitrification via NAD+ reduction was severely depressed. Further studies indicated that PCP also decreased the genes expression of several key enzymes responsible for denitrification, such as napA of nitrate reductase (NAR), nirS of nitrite reductase, norB of nitric oxide reductase, and nosZ of nitrous oxide reductase; however, there was only the enzyme activity of NAR was remarkably inhibited.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号