首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   72828篇
  免费   7321篇
  国内免费   5319篇
工业技术   85468篇
  2024年   112篇
  2023年   1347篇
  2022年   1590篇
  2021年   2784篇
  2020年   2399篇
  2019年   2165篇
  2018年   1946篇
  2017年   2403篇
  2016年   2667篇
  2015年   2692篇
  2014年   3923篇
  2013年   4232篇
  2012年   4895篇
  2011年   6260篇
  2010年   4622篇
  2009年   5192篇
  2008年   4561篇
  2007年   5265篇
  2006年   4705篇
  2005年   3958篇
  2004年   3057篇
  2003年   2693篇
  2002年   2104篇
  2001年   1579篇
  2000年   1485篇
  1999年   1196篇
  1998年   930篇
  1997年   710篇
  1996年   711篇
  1995年   594篇
  1994年   568篇
  1993年   439篇
  1992年   345篇
  1991年   285篇
  1990年   213篇
  1989年   175篇
  1988年   115篇
  1987年   97篇
  1986年   108篇
  1985年   57篇
  1984年   39篇
  1983年   38篇
  1982年   45篇
  1981年   23篇
  1980年   38篇
  1979年   28篇
  1977年   17篇
  1976年   16篇
  1975年   9篇
  1974年   9篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
61.
In this study, we developed a unique defect healing method for 3D printed ceramic compact via cold isostatic pressing (CIP) after debinding, and typical features of interlayer interface defects of 3D-printed zirconia compact were characterized and found to be reduced significantly. The characteristic sintering kinetics window and microstructure evolution of the healed sintered bodies were systematically investigated, which was found to be quite different from conventional shaping methods. The three sintering stages are probed by their feature microstructure details such as the mechanically flattening surface at the early sintering stage, the heterogeneous microstructure and high porosity in the interlayer interface region at the middle stage, and the slightly ripple-like structural features combined with the healed interlayer defects at the final stage. The evolution of the pore structure of the healed 3D printed bodies were traced and the mechanical properties such as the Young's modulus, hardness, and fracture toughness were measured to understand the significance of the heal effect.  相似文献   
62.
CsPbX3 (X = Cl, Br, I) perovskite quantum dots (QDs) represent bright and tunable photoluminescence, it is regrettable that the air instability and poor water resistant properties prevent their application in optoelectronic devices. At the same time, the toxicity of lead is also a major factor restricting its development. As a consequence, we demonstrate the partial replacement of Pb with Mn through conventional melt-quenching and heat-treatment method preparation of Mn-doped CsPb(Cl/Br)3 QD glass. Mn-doped CsPb(Cl/Br)3 QD glass exhibits high luminescent intensity like QDs. It is important that Mn-doped CsPb(Cl/Br)3 QD glass with Dual-Color maintained the same lattice structure like Mn-doped CsPb(Cl/Br)3 QDs, and highly homogeneous spectral characteristics of Mn luminescence. The intensity and position of this Mn-related emission are also tunable by altering the experimental parameters, such as the Pb-to-Mn feed ratio, annealing temperature. More importantly, the as-prepared orange Mn-doped CsPb(Cl/Br)3 QD glass was employed to fabricate white LEDs combined with a commercial Ce3+:Y3Al5O12 phosphor-in-glass (Ce-PiG) on top of a InGaN blue chip. And the constructed WLEDs generate a warm white with an optimal luminous efficacy (LE) of 67.00 lm/W, a high CRI of 81.4, and a low CCT of 4902 K.  相似文献   
63.
For an effective optimization of pulp thermoforming and of the moulded pulp products manufactured by this process, a full understanding of the process physics combined with full knowledge of the pressing equipment is necessary. For this reason, in this Addendum, we clarify how the process parameters “Holding time,” “Vacuum time,” “Cycle time,” and “Temperature” were interpreted and subsequently defined for the analysis of the process and product‐related outputs of the thermoforming experiments.  相似文献   
64.
We conducted a randomized trial of portable HEPA air cleaners with pre-filters designed to also reduce NH3 in non-smoking homes of children age 6-12 with asthma in Yakima Valley (Washington, USA). Participants were recruited through the Yakima Valley Farm Workers Clinic asthma education program. All participants received education on home triggers while intervention families additionally received two HEPA cleaners (child's sleeping area, main living area). Fourteen-day integrated samples of PM2.5 and NH3 were measured at baseline and one-year follow-up. We fit ANCOVA models to compare follow-up concentrations in HEPA vs control homes, adjusting for baseline concentrations. Seventy-one households (36 HEPA, 35 control) completed the study. Most were single-family homes, with electric heat and stove, A/C, dogs/cats, and mean (SD) 5.3 (1.8) occupants. In the sleeping area, baseline geometric mean (GSD) PM2.5 was 10.7 (2.3) μg/m3 (HEPA) vs 11.2 (1.9) μg/m3 (control); in the living area, it was 12.5 (2.3) μg/m3 (HEPA) vs 13.6 (1.9) μg/m3 (control). Baseline sleeping area NH3 was 62.4 (1.6) μg/m3 (HEPA) vs 65.2 (1.8) μg/m3 (control). At follow-up, HEPA families had 60% (95% CI, 41%-72%; p < .0001) and 42% (19%-58%; p = .002) lower sleeping and living area PM2.5, respectively, consistent with prior studies. NH3 reductions were not observed.  相似文献   
65.
《Ceramics International》2022,48(2):1814-1819
Sr3Al2-xBxO5Cl2:Eu2+, Dy3+ (x = 0, 0.2, 0.4) long persistent phosphors were prepared via solid-state process. The pristine Sr3Al2O5Cl2:Eu2+, Dy3+ phosphor exhibits orange/red broad band emission around 609 nm, which can be attributed to the electric radiation transitions 4f65 d1→4f7 of Eu2+. Upon the same excitation, the B3+-doped Sr3Al2-xBxO5Cl2:Eu2+, Dy3+ phosphors display red-shift from 609 nm to 625 nm with increasing B3+ concentrations. The XRD patterns show that Al3+ can be replaced by B3+ in the host lattice at the tetrahedral site, which causes lattice contraction and crystal field enhancement, and thereafter achieves the red-shift on the emission spectrum. The XPS investigation provides direct evidence of the dominant 2-valent europium in the phosphor, which can be ascribed for the broad band emission of the prepared phosphors. The afterglow of all phosphors show standard double exponential decay behavior, and the afterglow of Sr3Al2O5Cl2:Eu2+, Dy3+is rather weak, while the sample co-doped with B3+shows longer and stronger afterglow, as confirmed after the curve simulation. The analysis of thermally stimulated luminescence showed that, when B3+ is introduced, a much deeper trap is created, and the density of the electron trap is also significantly increased. As a result, B3+ ions caused redshift and enhanced afterglow for the Sr3Al2-xBxO5Cl2:Eu2+, Dy3+ phosphor.  相似文献   
66.
《Ceramics International》2022,48(18):26233-26247
A new type of 3D-printable ‘one-part’ geopolymer was synthesized with fly ash (FA), granulated blast furnace slag (GBFS), steel slag (SS) and flue gas desulfurization gypsum (FGD). The effects of SS content (0–40%) on the rheological properties, 3D-printability, mechanical anisotropy and reaction kinetics of geopolymer were investigated. The yield stress and plastic viscosity monotonically decreased with the increasing SS content. Contrarily, the geopolymer with 10% of SS presented better extrudability, buildability and mechanical strength than those with 0, 20%, 30% and 40% of SS. This was mainly attributed to the conflicting influence of SS on geopolymerization, of which the OH? produced by hydration of SS raised the alkalinity of the reaction system and accelerated the dissolution of SiO44? and AlO45?, while the low reactivity prohibited the following polymerization process. Furthermore, the 3D-printed geopolymer presented more compact microstructure and less mechanical anisotropy thanks to the crosslinking of morphologically complementary products, including N(C)-A-S-H, C–S–H, AFt and CH, formed via synergistic reaction of FA-GBFS-SS-FGD system.  相似文献   
67.
β(1,3)-glucans are a component of fungal and plant cell walls. The β-glucan of pathogens is recognized as a non-self-component in the host defense system. Long β-glucan chains are capable of forming a triple helix structure, and the tertiary structure may profoundly affect the interaction with β-glucan-binding proteins. Although the atomic details of β-glucan binding and signaling of cognate receptors remain mostly unclear, X-ray crystallography and NMR analyses have revealed some aspects of β-glucan structure and interaction. Here, we will review three-dimensional (3D) structural characteristics of β-glucans and the modes of interaction with β-glucan-binding proteins.  相似文献   
68.
69.
With this contribution,as a comment to the publication in Journal of Mate rials Science&Technology 44(2020)54,reporting giant dielectric response,structural characterization and numerical simulations in Sr_(1-1.5 x)Bi_xTiO3ceramics,we show that the re ported results are rather contradicting and not well analysed,while the suggested mechanism for the giant permittivity response is not valid or doubtful and has to be reconsidered.Moreover,many details and data are missing making impossible not only to call the obtained results very suitable for practical application but even to reproduce them.  相似文献   
70.
《Ceramics International》2021,47(20):28218-28225
Si3N4–SiC/SiO2 composites were prepared by employing three-dimensional (3D) printing using selective laser sintering (SLS) and infiltration processing. The process was based on the infiltration of silica sol into porous SLS parts, and silicon carbide and silicon nitride particles were bonded by melted nano-sized silica particles. To optimize the manufacturing process, the phase compositions, microstructures, porosities, and flexural strengths of the Si3N4–SiC/SiO2 composites prepared at different heat-treatment temperatures and infiltration times were compared. Furthermore, the effects of the SiC mass fraction and the addition of Al2O3 and mullite fibers on the properties of the Si3N4–SiC/SiO2 composites were investigated. After repeated infiltration and heat treatment, the flexural strength of the 3D-printed Si3N4–SiC/SiO2 composite increased significantly to 76.48 MPa. Thus, a Si3N4–SiC/SiO2 composite part with a complex structure was successfully manufactured by SLS and infiltration processes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号