首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13360篇
  免费   1792篇
  国内免费   959篇
工业技术   16111篇
  2024年   29篇
  2023年   313篇
  2022年   501篇
  2021年   643篇
  2020年   597篇
  2019年   591篇
  2018年   583篇
  2017年   615篇
  2016年   541篇
  2015年   508篇
  2014年   683篇
  2013年   914篇
  2012年   821篇
  2011年   935篇
  2010年   653篇
  2009年   733篇
  2008年   675篇
  2007年   931篇
  2006年   799篇
  2005年   664篇
  2004年   641篇
  2003年   496篇
  2002年   362篇
  2001年   322篇
  2000年   259篇
  1999年   218篇
  1998年   168篇
  1997年   156篇
  1996年   147篇
  1995年   103篇
  1994年   88篇
  1993年   93篇
  1992年   74篇
  1991年   54篇
  1990年   37篇
  1989年   36篇
  1988年   21篇
  1987年   9篇
  1986年   8篇
  1985年   12篇
  1984年   6篇
  1983年   4篇
  1982年   31篇
  1981年   20篇
  1979年   4篇
  1978年   4篇
  1977年   2篇
  1976年   2篇
  1959年   1篇
  1951年   4篇
排序方式: 共有10000条查询结果,搜索用时 22 毫秒
41.
《Ceramics International》2020,46(14):22438-22451
In this paper, two coating techniques, the high velocity oxy-fuel (HVOF) and air plasma spray (APS) techniques, were used to deposit a bond coat of NiCoCrAlYTa on the Inconel 625 substrate, followed by applying a topcoat of yttria-stabilized zirconia (YSZ). The samples were preoxidized in an argon-controlled furnace at a temperature of 1000 °C for 12 and 24 h to characterize the microstructure of a thermally grown oxide (TGO) using the two coating techniques. The most suitable preoxidized samples were further tested for isothermal oxidation at 1000 °C for up to 120 h, and a hot corrosion test was performed at 1000 °C for up to 52 h or until spalling occurred. As-sprayed and oxidized samples prepared with different coating techniques were evaluated in terms of their microstructure using different characterization methods, such as field emission scanning electron microscopy (FESEM), variable pressure scanning electron microscopy (VPSEM), energy dispersive X-ray spectroscopy (EDS) equipped with energy dispersive X-ray and X-ray diffraction (XRD) analyses. In addition, the mechanical properties of these samples were evaluated using adhesion tests. The results show that the YSZ/NiCoCrAlYTa coating applied with the HVOF technique forms a more thin and continuous layer of TGO than that obtained when applying a YSZ/NiCoCrAlYTa coating using the APS technique, indicating that a severe brittle oxidation interface exists between the two layers. The results also indicate that the mechanical strength obtained from the adhesion test of the coated samples is observably affected by the oxidation behaviors obtained with the different deposition techniques chosen.  相似文献   
42.
本文采用微波消解-电感耦合等离子体质谱法(ICP-MS)测定豆制品中铝的含量,对测定过程中可能引入的不确定度进行分析和评定。根据CNAS-CL01-G003:2019对测定不确定度的有关要求,建立了不确定度评定的数学模型,分析不确定度的主要来源,并将各分量进行合成。当铝含量为39.56mg/kg时,扩展不确定度为2.51mg/kg(k=2)。针对引起测定不确定度的主要贡献者,通过几种改变测量方法的途径,使其中3 个主要分量分别从0. 019 662、0. 002 412、0.002 74下降为0. 010 085、 0. 001 520、0. 001 66,效果显著,达到了降低影响结果准确性因素的目的。  相似文献   
43.
热浸镀Al–Si合金涂层是一种有效的现代钢铁防腐涂层,但熔融Al–Si合金腐蚀已成为热浸镀Al–Si合金生产线沉没辊及其备件亟待解决的关键问题之一。本工作采用大气等离子喷涂技术制备Y2O3部分稳定ZrO2(YSZ)/NiCrAlY防护涂层,研究了喷涂功率对YSZ涂层组织和力学性能的影响和涂层在700℃下Al–Si熔体中的腐蚀行为。结果表明,YSZ涂层是由板条和层间柱状晶粒组成的典型层状结构,随着喷涂功率从37 kW增至46 kW,层间柱状结晶呈长大趋势;YSZ涂层主要由t-ZrO2相和少量m-ZrO2相组成,喷涂功率对涂层相组成无明显影响;喷涂功率为40 kW的YSZ涂层具有较高的显微硬度642.4 HV0.3和结合强度62 MPa。此外,当带有涂层的样品在700℃的Al–Si熔液中腐蚀240 h后,YSZ涂层与高温Al–Si熔液之间的界面没有反应层生成,同时Al–Si合金熔液中的Al和Si元素也未渗透进YSZ涂层内部,表明YSZ/NiCrAlY防护涂层有效地将Al–Si合金熔体阻挡在涂层表面。  相似文献   
44.
Decomposition of formic acid biomass to generate hydrogen is vital for coping with fossil energy depletion, environmental pollution, and developing clean, efficient, safe, and sustainable modern energy system. In this study, a PdAu/C−C bimetallic catalyst was prepared by the co-impregnation method followed by an atmospheric pressure (AP) cold plasma treatment to synthesize PdAu/C−P catalysts. The resulting PdAu/C−P showed excellent catalytic activity for the formic acid dehydrogenation (FAD) reaction. The total volume of H2 and CO2 released from the FAD reaction was about 375 mL after 4 h at 50 °C, and the initial turnover frequency (TOFinitial) was 808.6 h−1. We used X−ray diffractometry (XRD), temperature programmed reduction (TPR) and high-resolution transmission electron microscopy (HRTEM) to show that plasma can effectively promote the redispersion of Pd−Au particles on the surface of the support. The average particle size of PdAu/C−P (3.5 ± 1.5 nm) was less than PdAu/C−C (4.4 ± 1.9 nm) and uniformly distributed. X-ray photoelectron spectroscopy (XPS), TPR, and HRTEM showed that PdAu/C−P has a higher degree of alloying. In addition, the strong electric field in the plasma facilitated more metal sites located on the outer surface of the support in PdAu/C−P, and the atomic ratio of M/C (M = Pd and Au) (0.0134) was much larger than that of PdAu/C−C (0.0060). The apparent activation energy (Ea) of PdAu/C−P for the FAD reaction was only 27.25 kJ mol−1, and it had much higher activity and stability than the commercial Pd/C (Sigma−Aldrich). The total volume of H2 and CO2 produced over the PdAu/C−P for three cycles was 1.33, 5.87, and 8.56 times that of commercial Pd/C. Overall, the cold plasma enhanced the degree of alloying, promoted the redispersion of agglomerated particles, and regulated the surface enrichment of the active metal components. This is of great significance for guiding the preparation of high−performance multi-metal catalysts by cold plasma.  相似文献   
45.
46.
《Ceramics International》2020,46(14):22774-22780
Ceramic alumina nanofibers were prepared by plasma-assisted calcination (PAC) using atmospheric pressure plasma. Electrospun polyvinyl pyrrolidone/aluminium butoxide fibers were pre-treated by plasma generated in ambient air using a special type of coplanar dielectric barrier discharge. The effect of plasma on fibers and structural, chemical and crystalline properties of obtained ceramic nanofibers were characterized using X-Ray Photoelectron Spectroscopy and Scanning Electron Microscopy, Energy-dispersive X-ray Spectroscopy and X-Ray Diffraction. Thermogravimetric and differential thermal analysis were used for the study of thermal behaviour of untreated and plasma-treated samples. The ceramic fibers prepared by PAC exhibit suitable chemical composition, higher porosity, high length of fibers and better crystalline properties with simultaneous simplifying of the sintering process. The plasma pre-treatment of fibers results in a shortening of following thermal treatment, decrease of the required temperature and excludes a slow temperature increase as prevention of fibrous structure degradation typical in preparation of ceramic fibers by polymer-template techniques.  相似文献   
47.
This research presents an analysis of the influence of graphene reinforcement on the thermal and mechanical properties of silicon carbide ceramics, at 2.5% (wt%) graphene content. The SiC composites, containing various carbon nanofillers (graphene oxide and graphene nanoparticles), were sintered by the classical two stage spark plasma sintering method. Two current modes were used, the continuous mode and the pulsed current mode. The results from photothermal radiometry and investigations of the mechanical properties showed that graphene additives significantly improve the thermal properties and toughness of material, sintered from a SiC powder. An 45% growth in the toughness was observed, which increased from 1.21 to 1.75?MPa/m1/2. The thermal diffusivity value also increased from 0.60 to 0.71?cm2/s and giving an improvement in thermal properties of 18%. The friction coefficient reached 7% giving an increase in value from 0.62 to 0.66. Microscopic investigations supported the photothermal radiometry (PTR) results. Whilst, thermal imaging revealed homogeneity of the local thermal properties of the products fabricated from the starting SiC powder.  相似文献   
48.
Taguchi design of experiments methodology was used to determine the most influential spark plasma sintering (SPS) parameters on densification of TiB2–SiC ceramic composites. In this case, four processing factors (SPS temperature, soaking time, applied external pressure and SiC particle size) at three levels were examined in order to acquire the optimum conditions. The statistical analysis identified the sintering temperature as the most effective factor influencing the relative density of TiB2–SiC ceramics. A relative density of 99.5% was achieved at the optimal SPS conditions; i.e. temperature of 1800?°C, soaking time of 15?min and pressure of 30?MPa by adding 200-nm SiC particulates to the TiB2 matrix. The experimental measurements and predicted values for the relative density of composite fabricated at the optimum SPS conditions and reinforced with the proper SiC particle size were almost similar. The mechanisms of sintering and densification of spark plasma sintered TiB2–SiC composites were discussed in details.  相似文献   
49.
Micron-sized boron carbide (B4C) powders were subjected to spark plasma sintering (SPS) under temperature ranging from 1700 °C to 2100 °C for a soaking time of 5, 10 and 20 min and their densification kinetics was determined using a creep deformation model. The densification mechanism was interpreted on the basis of the stress exponent n and the apparent activation energy Qd from Harrenius plots. Results showed that within the temperature range 1700–2000 °C, creep deformation which was controlled by grain-boundary sliding or by interface reaction contributed to the densification mechanism at low effective stress regime (n = 2,Qd = 459.36 kJ/mol). While at temperature higher than 2000 °C or at high stress regime, the dominant mechanism appears to be the dislocation climb (n = 6.11).  相似文献   
50.
Nanocrystalline nickel oxide (NiO) was prepared from nickel hydroxide by Spark plasma sintering (SPS) and the mechanisms involved in the densification of NiO were studied. Reverse precipitated nickel hydroxide powders were SPS processed at 400, 600 and 700?°C with 70?MPa pressure. Pure NiO with 12?nm crystallite size formed after 400?°C sintering process. However NiO grains had grown to 18 and 38?nm after 600 and 700?°C sintering respectively. NiO pellets prepared using 600 and 700?°C SPS sintering schedules had relative densities of 83% and 94% respectively. Two displacement rate regimes were observed during densification of NiO in both 600 and 700?°C sintering processes. Decomposition of nickel hydroxide and particle sliding of NiO led to first displacement rate maximum while inverse Hall-Petch based plastic deformation facilitated densification during the constant second displacement rate regime. No densification occurred during sintering holding times indicating the limited role that diffusion played during densification.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号