首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   289篇
  免费   43篇
  国内免费   78篇
地球科学   410篇
  2024年   1篇
  2023年   6篇
  2022年   10篇
  2021年   5篇
  2020年   8篇
  2019年   10篇
  2018年   9篇
  2017年   4篇
  2016年   8篇
  2015年   8篇
  2014年   13篇
  2013年   20篇
  2012年   19篇
  2011年   21篇
  2010年   22篇
  2009年   21篇
  2008年   36篇
  2007年   24篇
  2006年   29篇
  2005年   26篇
  2004年   11篇
  2003年   18篇
  2002年   15篇
  2001年   22篇
  2000年   7篇
  1999年   4篇
  1998年   4篇
  1997年   1篇
  1996年   5篇
  1995年   5篇
  1994年   1篇
  1993年   3篇
  1991年   2篇
  1990年   6篇
  1989年   2篇
  1984年   1篇
  1982年   1篇
  1937年   1篇
  1935年   1篇
排序方式: 共有410条查询结果,搜索用时 15 毫秒
31.
In this paper, the numerical simulation bias of the non-hydrostatic version GRAPES-Meso (Mesoscale of the Global and Regional Assimilation and Prediction System) at the resolution of 0.18o for a torrential rain case, which happened in May 31st to June 1st 2005 over Hunan province, are diagnosed and investigated by using the radiosondes, intensive surface observation, and the operational global analysis data, and the sensitivity experimental results as well. It is shown in the result that the GRAPES-Meso could reproduce quite well the main features of large-cale circulation and the distribution of the accumulated 24h precipitation and the key locations of the torrential rainfall are captured reasonably well by the model. However, bias exist in the simulation of the mesoscale features of the torrential rain and details of the relevant systems, for example, the simulated rainfall that is too earlier in model integration and remarkable underprediction of the peak value of rainfall rates over the heaviest rainfall region, the weakness of the upper jet simulation and the overprediction of the south-west wind in the lower troposphere etc. The investigation reveals that the sources of the simulation bias are different. The erroneous model rainfall in the earlier integration stage over the heaviest rainfall region is induced by the model initial condition bias of the wind field at about 925hPa over the torrential rainfall region, where the bias grow rapidly and spread upward to about 600hPa level within the few hours into the integration and result in abnormal convergence of the wind and moisture, and thus the unreal rainfall over that region. The large bias on the simulated rainfall intensity over the heaviest rainfall region might be imputed to the following combined factors of (1) the simulation bias on the strength and detailed structures of the upper-level jet core which bring about significant underpredictions of the dynamic conditions (including upper-level divergence and the upward motion) for heavy rainfall due to unfavorable mesoscale vertical coupling between the strong upper-level divergence and lower-level convergence; and (2) the inefficient coupling of the cumulous parameterization scheme and the explicit moisture in the integration, which causes the failure of the explicit moisture scheme in generating grid-scale rainfall in a certain extent through inadequate convective adjustment and feedback to the grid-scale. In addition, the interaction of the combined two factors could form a negative feedback to the rainfall intensity simulation, and eventually lead to the obvious underprediction of the rainfall rate.  相似文献   
32.
Study was carried out on two landfall typhoons Haitang and Matsa, which affected Zhejiang province seriously in 2005. Firstly, the similarity and difference between the two typhoon-induced heavy rains were compared and it was pointed out that both of them brought strong large-scale precipitation and the maximum centers of rainfall were located on the north side of the landfall site. Making landfall on Fujian, Haitang was weaker than Matsa in intensity but surpassed it in rainfall. Then with focus on intensity, moving speed, structure of typhoon, circulation and terrain, the two typhoon-related heavy rains were compared and analyzed. Results show that the asymmetrical distribution of rainfall was closely related to the structure of typhoons themselves, moisture transportation and mesoscale terrain. In contrast to the south side, the north side was hotter and wetter and water vapor was also more abundant. The phenomenon of more rainfall induced by Haitang was in connection with the following reasons. Invading cold air led to rainfall increases, weakened dynamic field and slower movement both benefited precipitation. For the last part, the cold characteristic of air mass over Zhejiang was also a favorable factor for the rain.  相似文献   
33.
The multi-scale weather systems associated with a mei-yu front and the corresponding heavy precipitation during a particular heavy rainfall event that occurred on 4 5 July 2003 in east China were successfully simulated through rainfall assimilation using the PSU/NCAR non-hydrostatic, mesoscale, numerical model (MM5) and its four-dimensional, variational, data assimilation (4DVAR) system. For this case, the improvement of the process via the 4DVAR rainfall assimilation into the simulation of mesoscale precipitation systems is investigated. With the rainfall assimilation, the convection is triggered at the right location and time, and the evolution and spatial distribution of the mesoscale convective systems (MCSs) are also more correctly simulated. Through the interactions between MCSs and the weather systems at different scales, including the low-level jet and mei-yu front, the simulation of the entire mei-yu weather system is significantly improved, both during the data assimilation window and the subsequent 12-h period. The results suggest that the rainfall assimilation first provides positive impact at the convective scale and the influences are then propagated upscale to the meso- and sub-synoptic scales.
Through a set of sensitive experiments designed to evaluate the impact of different initial variables on the simulation of mei-yu heavy rainfall, it was found that the moisture field and meridional wind had the strongest effect during the convection initialization stage, however, after the convection was fully triggered, all of the variables at the initial condition seemed to have comparable importance.  相似文献   
34.
基于“前兆台网(站)观测数据跟踪分析平台”,对武汉台形变观测资料进行了系统分析,提取出观测曲线受降雨干扰影响的事件,采用降雨总量、初始驱动降雨量和瞬时降雨量最大值等降雨参数对降雨干扰事件进行统计分析。结果表明:降雨总量达40 mm、初始驱动降雨量为0.3 mm或瞬时降雨量最大值达0.6 mm时,DSQ型水管倾斜仪易受降雨干扰;SSY型铟瓦棒伸缩仪当降雨总量超60 mm或瞬时降雨量最大值大于0.5 mm时易受降雨干扰;VS型垂直摆倾斜仪受降雨干扰与降雨总量、初始驱动降雨量和瞬时降雨量最大值无显著相关关系;降雨总量对形变仪器观测物理量的影响基本呈现线性;而形变仪器观测物理量与初始驱动降雨量、瞬时降雨量最大值无显著相关关系。认为武汉台形变观测受降雨影响主要来自降雨渗透影响和周边水体荷载变化影响两个方面。  相似文献   
35.
土壤水分深层渗漏是陆地近地层水分循环的重要环节。利用土壤水分深层渗漏记录仪对毛乌素沙地典型流动沙丘不同深度土层的土壤渗漏水量连续进行两年定点监测。结果表明:(1)2016年生长季(4月1日至10月31日)降水量为2017年的1.93倍,但50、100、200 cm沙层的渗漏水量分别是2017年同期的4.53、5.53,5.22倍。同时,渗漏水量与降雨量及土壤蓄水量的波峰较一致。(2)强降雨对深层渗漏水量的影响较大,土壤蓄水量的变化也与深层渗漏水量密切相关;降雨量较小时,土壤蓄水量与深层渗漏水量之间的关系更为密切。在连续降雨过程中,越往深处,渗漏的产生通常是多次降雨过程累积的结果,将土壤蓄水量作为中间变量,能更好地分析土壤深层渗漏过程。(3)当天蓄水量与次日渗漏水量的相关系数较高,土层越深,深层渗漏水量与土壤蓄水量的相关系数增加,二者之间的线性拟合的R2也相应增加。  相似文献   
36.
这次会议主要任务是:全面贯彻落实2009年“全国汛期地质灾害防治工作视频会议”精神,总结我省2008年地质灾害防治工作情况,部署2009年汛期我省地质灾害防治工作。根据省气候中心提供的我省今年汛期降雨趋势资料,虽然我省今年夏季总体上降雨量少于往年,但降雨分布不均,特别是在地质灾害易发区仍存在高强度降水可能,防灾工作不容乐观,  相似文献   
37.
降雨量与闽西北地区地质灾害关系初探   总被引:1,自引:0,他引:1  
通过对闽西北某地区2010年"6.13"特大强降雨下产生地质灾害的频数及程度分析对比,探讨降雨量与形成地质灾害的影响。分析结果表明,降雨的强度和时间对地质灾害的形成有重要的影响,对以后地质灾害预报预警有一定的指导意义。  相似文献   
38.
《浙江地质》2010,(5):14-16
一、地质灾害趋势预测 根据省气象部门预测,2010年我省属于气象灾害偏重年景,梅汛期可能有明显的降水集中期,预计有4个台风影响我省,可能有1—2个登陆我省,由于台风暴雨极易引发地质灾害,因此地质灾害防灾形势严峻。5月下旬至6月下旬的梅汛期与7月下旬至9月下旬的台汛期是地质灾害重点防范期。梅汛期日降雨量50毫米以上,或连续大雨3天以上、过程降雨量大于100毫米的时段,台汛期台风降雨开始时至台风过后降雨停止后48小时时段,是地质灾害易发和重点防范时段。重点防范的地质灾害为滑坡、崩塌、泥石流。  相似文献   
39.
GRACE(Gravity Recovery And Climate Experiment)卫星计划为监测陆地水储量变化提供了有效技术手段.本文采用2003至2010年共计8年的GRACE月重力场模型反演中国西南区域陆地水储量变化,与GLDAS(Global Land Data Assimilation System)全球水文模型进行对比分析,其结果在时空分布上均符合较好,同时在2009年秋至2010年春该区域陆地水储量均呈现明显减少,与该时段云贵川三省的干旱事件相一致;比较分析了2009年秋至2010年春GRACE反演陆地水储量变化与TRMM(Tropical Rainfall Measuring Mission)合成数据计算的月降雨量的时空分布,两组结果均与西南干旱事件对应时段与区域十分吻合;对近8年的陆地水储量变化与月降雨量数据进行相关性分析,其结果表明陆地水储量变化与降雨量强相关,即降雨量是导致陆地水储量变化的主要因素;分析该区域地表温度变化,结果显示2009年9月至2010年3月地表温度均比历史同期高,地表温度的升高加剧了陆地水储量的减少.  相似文献   
40.
衡阳市位于湖南省中南部,地处湘江中游,全市土地总面积1.53万平方公里。衡阳中部为盆地,四周丘岗山地环绕,以湘江干流为中轴,水系发育良好。衡阳属亚热带季风气候,平均年降雨量约1660毫米,降雨主要集中在5~9月。受地理、地质、气象、水文等自然因素和愈来愈强烈的人为活动影响,衡阳市属地质灾害高发区。据全市地质灾害区划与调查统计,目前,衡阳市共发现地质灾害隐患点3825处(含矿山),  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号