首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   608篇
  免费   36篇
  国内免费   35篇
地球科学   679篇
  2024年   2篇
  2023年   19篇
  2022年   15篇
  2021年   15篇
  2020年   18篇
  2019年   17篇
  2018年   18篇
  2017年   13篇
  2016年   12篇
  2015年   17篇
  2014年   23篇
  2013年   46篇
  2012年   18篇
  2011年   35篇
  2010年   26篇
  2009年   25篇
  2008年   38篇
  2007年   29篇
  2006年   39篇
  2005年   34篇
  2004年   25篇
  2003年   22篇
  2002年   22篇
  2001年   18篇
  2000年   19篇
  1999年   24篇
  1998年   22篇
  1997年   12篇
  1996年   13篇
  1995年   6篇
  1994年   9篇
  1993年   6篇
  1992年   5篇
  1991年   4篇
  1990年   4篇
  1989年   3篇
  1986年   1篇
  1985年   4篇
  1980年   1篇
排序方式: 共有679条查询结果,搜索用时 296 毫秒
31.
太湖生态环境演化及其原因分析   总被引:2,自引:1,他引:2       下载免费PDF全文
太湖地处长江下游三角洲,水域面积为2338km2,平均水深1.9m,最大水深不足2.6m,为一典型的大型浅水湖泊。太湖流域地势平坦,河网密布,河湖水力关系复杂。其主要补给径流来自西南部的天目山区及西部的宜溧河流域。每年夏天,大部分入湖洪水通过位于东太湖的太浦河及东北部的望虞河分别排入黄浦江与长江,由于出入湖河道的特殊位置,使得太湖南部的换水周期较短而北部较长。近几十年来,太湖由于污染而逐步呈现富营养化特征,污染物主要来自北部的无锡市和常州市,通过河道排入太湖北部的五里湖与梅梁湾,因此上述两地的水质较南部差。在东太湖,水产养殖对水环境的影响很大,亦呈现出富营养化特征,并殃及该地区的供水,加之该地区为太湖主要的泄洪通道,因此泥沙淤积严重,而且水生植物生长旺盛,呈现出明显的沼泽化趋势;在太湖四周地区,由于湖泊围垦和水利工程建设,其污染净化能力将降低,从而加速水环境恶化的趋势。太湖所面临这些问题,有待于强化湖泊科学管理来解决。  相似文献   
32.
松花湖富营养化现状及其影响因素分析   总被引:8,自引:1,他引:8  
通过2002年和2003年对东北地区松花湖水体富营养化状况进行调查和采样分析,对大量数据的多元相关分析和多元逐步回归分析、AGP试验和利用综合营养状态指数法进行评价。结果表明:松花湖处在中营养和轻度富营养状态;总磷是限制水体富营养化的主要因子之一。水体中变温层的形成,限制了上、下层湖水的混合,对下层水体中的溶解氧、无机氮和可溶性磷酸盐产生影响,随着变温层的消失,下层内的营养物质转移到湖上层,为藻类的繁殖提供条件。  相似文献   
33.
Red tide,also called harmful algal bloom interna-tionally,is a disaster abnormal phenomenon of oceanecology with an explosive breed or dense assemble ofone or several phytoplanktons in a specific ocean en-vironment condition,colors the seawater,influencesand harms ocean living things.The formation of redtide is controlled mainly by a complex interplay ofbiological,physical and chemical processes,but themost main cause influencing the occurrence of red tideis the seawater eutrophication,i.e.,the…  相似文献   
34.
Lacustrine groundwater discharge (LGD) transports nutrients from a catchment to a lake, which may fuel eutrophication, one of the major threats to our fresh waters. Unfortunately, LGD has often been disregarded in lake nutrient studies. Most measurement techniques are based on separate determinations of volume and nutrient concentration of LGD: Loads are calculated by multiplying seepage volumes by concentrations of exfiltrating water. Typically low phosphorus (P) concentrations of pristine groundwater often are increased due to anthropogenic sources such as fertilizer, manure or sewage. Mineralization of naturally present organic matter might also increase groundwater P. Reducing redox conditions favour P transport through the aquifer to the reactive aquifer‐lake interface. In some cases, large decreases of P concentrations may occur at the interface, for example, due to increased oxygen availability, while in other cases, there is nearly no decrease in P. The high reactivity of the interface complicates quantification of groundwater‐borne P loads to the lake, making difficult clear differentiation of internal and external P loads to surface water. Anthropogenic sources of nitrogen (N) in groundwater are similar to those of phosphate. However, the environmental fate of N differs fundamentally from P because N occurs in several different redox states, each with different mobility. While nitrate behaves essentially conservatively in most oxic aquifers, ammonium's mobility is similar to that of phosphate. Nitrate may be transformed to gaseous N2 in reducing conditions and permanently removed from the system. Biogeochemical turnover of N is common at the reactive aquifer‐lake interface. Nutrient loads from LGD were compiled from the literature. Groundwater‐borne P loads vary from 0.74 to 2900 mg PO4‐P m?2 year?1; for N, these loads vary from 0.001 to 640 g m?2 year?1. Even small amounts of seepage can carry large nutrient loads due to often high nutrient concentrations in groundwater. Large spatial heterogeneity, uncertain areal extent of the interface and difficult accessibility make every determination of LGD a challenge. However, determinations of LGD are essential to effective lake management. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
35.
沈辉  万夕和  何培民 《海洋科学》2016,40(10):160-169
近年来,随着海水富营养化加剧,滩涂沉积物多项重要理化参数也随之恶化,进而导致滩涂底质生境退化,表现出较为明显的富营养化趋势。为改善和恢复滩涂沉积物的生态环境,国内外学者进行了较多的生物境修复探索研究工作。作者概述了滩涂富营养化的现状及原因,各种滩涂生物修复技术的原理、特点及其修复效果,分析了各类生境修复技术的优缺点。同时,就滩涂生境修复技术在滩涂修复和海洋环境保护领域今后的研究重点进行了展望。  相似文献   
36.
Quantifying land use heterogeneity helps better understand how it influences biophysical systems. Land use area proportions have been used conventionally to predict water quality variables. Lacking an insight into the combined effect of various spatial characteristics could lead to the statistical bias and confused understanding in previous studies. In this study, using spatial techniques and mathematical models, a diagnostic model was developed and applied for quantifying and incorporating three spatial components, namely, slope, distance to sampling spots, and arrangement. The upper catchment of Miyun Reservoir was studied as the test area. Total nitrogen, total phosphorus, and chemical oxygen demand of water samples from field measurements were used to characterize the surface water quality in 52 sub-watersheds. Using parameter calibrations and determinations, combined spatial characteristics were explored and detected. Adjusted land use proportions were calculated by spatial weights of discriminating the relative contribution of each location to water quality and used to build the integrated models. Compared with traditional methods only using area proportions, our model increased the explanatory power of land use and quantified the effects of spatial information on water quality. This can guide the optimization of land use configuration to control water eutrophication.  相似文献   
37.
Wastewater discharges affect the functioning of small temporarily open/closed estuaries (TOCEs) through two main mechanisms: (1) they can significantly change the water balance by altering the quantity of water inflows, and (2) they can significantly change the nutrient balance and hence the water quality. This study investigated the bio-physical responses of a typical, small TOCE on the east coast of South Africa, the Mhlanga Estuary. This estuary receives significant inflows of treated effluent from upstream wastewater treatment works. Water and nutrient budgets were used together with biological sampling to investigate changes in the functioning of the system. The increase in inflows due to the effluent discharges has significantly increased the mouth breaching frequency. Furthermore, when the mouth closes, the accumulation of nutrients leads to eutrophication and algal blooms. A grey water index, namely the proportion of effluent in the estuary and an indicator of the additional nutrient inputs into the estuary, reached high values (?50%) during low flow regimes and when the mouth was closed. In these hyper-eutrophic conditions (DIN and DIP concentrations up to 457 μM and 100 μM respectively), field measurements showed that algal blooms occurred within about 14 days following closure of the mouth (chlorophyll-a concentrations up to 375 mg chl-a m−3). Water and nutrient balance simulations for alternative scenarios suggest that further increases in wastewater discharges would result in more frequent breaching events and longer open mouth conditions, but the occurrence of hyper-eutrophic conditions would initially intensify despite more frequent openings. The study indicates how water and nutrient balance simulations can be used in the planning and impact assessment of wastewater treatment facilities.  相似文献   
38.
Excess nitrogen inputs to estuaries have been linked to deteriorating water quality and habitat conditions which in turn have direct and indirect impacts on aquatic organisms. This paper describes the application of a previously verified watershed loading model to estimate total nitrogen loading rates and relative source contributions to 74 small-medium sized embayment-type estuaries in southern New England. The study estuaries exhibited a gradient in nitrogen inputs of a factor of over 7000. On an areal basis, the range represented a gradient of approximately a factor of 140. Therefore, all other factors being equal, the study design is sufficient to evaluate ecological effects conceptually tied to excess nitrogen along a nitrogen gradient. In addition to providing total loading inputs rates to the study estuaries, the model provides an estimate of the relative contribution of the nitrogen sources from each watershed to each associated estuary. Cumulative results of this analysis reveal the following source ranking (means): direct atmospheric deposition (37%), ≈wastewater (36%), >indirect atmospheric deposition (16%) > fertilizer (12%). However, for any particular estuary the relative magnitudes of these source types vary dramatically. Together with scientific evidence on symptoms of eutrophication, the results of this paper can be used to develop empirical pressure-state models to determine critical nitrogen loading limits for the protection of estuarine water quality.  相似文献   
39.
太湖富营养化遥感评价研究   总被引:2,自引:0,他引:2  
讨论利用Landsat/TM数据进行太湖富营养化评价的可行性,提出一种与常规湖泊富营养化评价方法(综合营养状态指数法)接轨的遥感评价新方法,建立了太湖富营养化遥感评价模型(中国湖泊营养状态指数模型TSIc),利用Landsat/TM数据定量反演出的太湖Chl - a浓度作为TSIc模型的输入变量,计算出太湖营养状态TSIc值,最后按照湖泊富营养化评价分级标准将太湖营养状态分为贫营养(TSIc<30)、中营养(30≤TSIc≤50)、轻度富营养(50<TSIc≤60)、中度富营养(60<TSIc≤70)和重度富营养(>70)5级.  相似文献   
40.
A new coastal marine ecosystem model was developed, which was composed of pelagic and benthic ecosystems, and was applied to Mikawa Bay, Japan. This model deals with variations of biochemical and physical interactions among dissolved oxygen and C–N–P species (composition formed out of carbon, nitrogen and phosphorus elements) so that it resolves the flux dynamics of carbon, nitrogen, phosphorus and oxygen elements. The physical and biochemical mechanism figured in this model is constructed for the purpose of simulating the estuarine lower trophic ecosystem, in areas where the sea was too deep for light to reach the sea-bottom. As a result of coupling the benthic with pelagic system, the effect of process of sedimentation and nutrient diffusion back to the pelagic system could be indicated. In addition, by implementing the tidal flat ecosystem model's calculation result, the integrated model can include the effect of water purification in tidal flats where the light can reach the sea-bottom, and where sea-weed, sea grass and benthic algae exist. In this study, the model indicates that oxygen-depleted water exists at the sea-bottom especially in summer mainly caused by an increase of oxygen consumption in the benthic system and a decrease of the vertical mixing water process. Furthermore, by comparing the case – with the tidal flat ecosystem model and the case without it, the effect of water purification of tidal flat estuaries was indicated. From the viewpoint of a short time scale, the tidal flat has the potential to restrict red tide (rapid increase of phytoplankton), and from the viewpoint of a long time scale, it restricts the sedimentation of detritus. Restricting the sedimentation prevents oxygen-depleted water occurring in the coastal marine system of Mikawa Bay.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号