首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   36篇
  免费   5篇
工业技术   41篇
  2023年   3篇
  2022年   4篇
  2020年   2篇
  2019年   3篇
  2018年   1篇
  2016年   2篇
  2015年   1篇
  2014年   4篇
  2013年   4篇
  2012年   4篇
  2011年   4篇
  2010年   1篇
  2008年   4篇
  2006年   3篇
  1998年   1篇
排序方式: 共有41条查询结果,搜索用时 15 毫秒
21.
目的通过关注纳米8YSZ粉末在不同温度下烧结过程中的晶粒长大行为及相结构组成变化,获得纳米8YSZ粉末的高温稳定性,防止高温烧结导致纳米8YSZ涂层性能明显衰减,致使涂层在正常服役过程中过早失效。方法采用共沉淀工艺合成低杂质含量的8YSZ纳米粉末,经过低温煅烧预处理后,在900~1200℃温度区间进行3~12 h的烧结。通过X射线衍射仪和扫描电子显微镜对纳米颗粒进行物相结构和形貌分析,根据Scherrer公式计算热处理后的颗粒平均晶粒尺寸,采用Arrhenius公式得到晶粒生长活化能,进而确定晶粒的生长机制。结果经过低温煅烧预处理后,粉末绝大多数仍然保持非晶态结构,经过高温热处理后,粉末均完成了晶态转化,相结构基本为单一四方相。温度为900~1100℃时,晶粒生长的活化能为42.638 k J/mol;温度为1100~1200℃时,晶粒生长的活化能为3.849 k J/mol。结论高温热处理后,纳米8YSZ粉末物相结构为单一四方相,可以保持高温稳定性,防止涂层性能明显衰减。温度为900~1200℃时,晶粒生长机制以表面扩散为主的聚合生长。  相似文献   
22.
等离子物理气相沉积 (PS-PVD) 作为一种热障涂层新型制备技术, 受到国内外的广泛关注。 PS-PVD 工艺 采用细小球形团聚粉体为原料, 原料在高温高速等离子射流中瞬时加热 - 熔融 - 气化, 这一复杂过程中粉体 - 等 离子体射流相互作用机理尚未完全揭示, 特别是粉体颗粒在高温高速射流中快速溃散气化过程研究较少。 本文研 究了细小球形团聚粉体的压溃强度测试方法, 进而对不同粘结剂类型、 含量、 不同颗粒尺寸的粉体压溃强度进行 表征, 研究了粉体特性对压溃强度影响规律, 并系统分析了粉体沉积效果。 结果表明, 随着粉体颗粒尺寸的增大, 其压溃强度呈现逐步降低趋势, 不同特性粉体趋势不同; 粘结剂类型变化、 特别是一定含量纳米尺度颗粒的存在, 会增大粉体压溃强度, 一定范围内粉体压溃强度越高, 涂层沉积速率越高。  相似文献   
23.
CMAS沉积物(CaO-MgO-Al_2O_3-SiO_2, CMAS)已经成为制约航空发动机涡轮叶片热障涂层应用的核心问题,其显著降低热障涂层服役寿命,严重的甚至堵塞叶片气膜冷却孔,导致合金基体烧蚀和失效。本文针对DZ40M钴基高温合金和其表面NiCrAlY涂层,模拟了热障涂层陶瓷层失效后,CMAS沉积物对合金基体和粘结层的腐蚀作用。针对1100℃预氧化10h后的样品,在涂抹相同面密度的CMAS沉积物后,在1100℃、1150℃、1200℃和1250℃条件下保温10h,系统分析了不同温度下CMAS对合金及NiCrAlY涂层表面氧化膜的破坏作用,通过XRD、SEM和EDS等手段,阐明了温度在1150℃以下,CMAS沉积物主要对氧化膜产生粘附及热应力影响,导致冷却过程中的氧化膜剥落;当温度高于1200℃时,CMAS逐步熔融或渗入氧化膜内部,导致氧化膜开裂剥落加速,对金属粘结层和基体的损伤破坏作用加剧。  相似文献   
24.
介军  祁飞  何箐  李改梅 《现代电子技术》2006,29(21):92-94,97
移动Agent与工作流管理的结合是目前移动Agent技术应用的主要方向之一。支持工作流管理的移动Agent系统能够改善现有工作流系统所欠缺的灵活性。论文介绍了应用面向Agent思想和面向对象技术实现支持工作流管理的移动Agent系统的关键技术与主要方法。论文中描述的内容为工作流系统的实现提供了一种新的思路和有效手段。  相似文献   
25.
伸缩臂叉车由于其具有升降和伸缩功能,使得负载产生的纵向倾翻力矩不断变化,特别是在伸缩臂下降或伸出的工况下,倾翻力矩不断增大。若操作人员判断不准确,则极易发生纵向倾翻,造成人员伤亡和财产损失。因此,针对各工况设计了安全控制系统,通过验证,达到了预期效果。  相似文献   
26.
重点探索了热喷涂工艺用于制备雷达吸波涂层的可行性,用玻璃材料取代传统有机材料作为粘结剂,使用高温材料SiC作为吸收剂,同时对SiC进行包覆处理,进一步优化其电磁性能.用烧结破碎法制备了喷涂粉末,使用火焰喷涂工艺制备涂层,在室温约400℃的条件下对涂层反射率进行了测试,在12 ~17 CHz的范围内,涂层反射率低于-5 ...  相似文献   
27.
为了提高热障涂层(TBC)的抗沉积物(主要成分为CaO、MgO、Al2O3和SiO2,简称CMAS)腐蚀性能,采用磁过滤阴极真空电弧(FCVA)技术在TBC表面上制备了致密的Al2O3覆盖层,比较和分析了Al2O3改性TBC和沉积态TBC的润湿行为和抗CMAS腐蚀性能。结果表明:使用FCVA技术制备Al2O3覆盖层的过程对7%(质量分数)氧化钇稳定的氧化锆(7YSZ)相的结构无明显影响,且经Al2O3改性的TBC综合性能均优于沉积态TBC。在1250 ℃、CMAS腐蚀条件下,Al2O3覆盖层有效地限制了熔融CMAS在TBC表面上的扩散行为。同时,Al2O3填充了7YSZ柱状晶之间的间隔并且阻碍了熔融CMAS的渗透,证明了FCVA可作为一种制备Al2O3涂层的新方法以提高TBC的抗CMAS腐蚀性能,且Al2O3涂层及其制备过程对TBC的热震性能均无消极影响。  相似文献   
28.
一种新型CMAS耦合条件下热障涂层热循环实验方法   总被引:1,自引:0,他引:1  
提出一种高温度梯度、燃气加热和CMAS(CaO-MgO-Al2O3-SiO2)沉积条件下热障涂层热循环实验方法,并对1200℃下CMAS沉积物对等离子喷涂热障涂层过早失效的影响因素进行讨论和分析。结果表明:无CMAS耦合条件下,热障涂层热循环寿命为573次;CMAS耦合条件下,热障涂层热循环寿命降低至70次。CMAS渗入会导致陶瓷层表层产生致密层和横向微裂纹增多。CMAS耦合条件下,热障涂层的失效以陶瓷层逐层剥离为主。  相似文献   
29.
针对热喷涂前后高温合金基体材料金相组织变化,以及喷涂热障涂层(英文缩写:TBCs)后合金基体材料在瞬时高温下的组织结构变化开展研究。结果表明热喷涂TBCs涂层过程中,高温合金基体材料组织没有明显结构变化;在1300K温度下,10min后的高温合金组织会形成枝晶状并析出二次γ相,而同等条件下,采用热喷涂TBCs涂层保护后的高温合金基体材料的组织没有发生明显的变化。  相似文献   
30.
Three kinds of Ni and Al powder mixtures with nominal composition Ni75Al25 were employed to prepare Ni3Al alloys by spark plasma sintering(SPS) process. The raw powders include fine powder, coarse powder and mechanically-alloyed fine powder. The effects of powder characteristics and mechanical alloying on structure and properties of sintered body were investigated by scanning electron microscopy(SEM), X-ray diffraction(XRD), bending test and Vickers hardness measurements. For all mixture powders near fully dense Ni3Al alloys (relative density〉99.5%) are obtained after sintering at 1150℃ for 5 min under 40 MPa. However a small fraction of Ni can be reserved for alloy from coarse powders. The results reveal that grain size is correlated with particle character of raw powder. Ni3Al alloy made from mechanically-alloyed fine powder has finer and more homogenous microstructure. The hardness of all alloys is similar varying from HV470 to 490. Ni3Al alloy made from mechanically-alloyed fine powder exhibites higher bending strength (1 070 MPa) than others.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号