首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   643篇
  免费   74篇
  国内免费   8篇
工业技术   725篇
  2024年   2篇
  2023年   8篇
  2022年   16篇
  2021年   16篇
  2020年   27篇
  2019年   25篇
  2018年   25篇
  2017年   36篇
  2016年   30篇
  2015年   17篇
  2014年   26篇
  2013年   34篇
  2012年   57篇
  2011年   52篇
  2010年   32篇
  2009年   34篇
  2008年   21篇
  2007年   41篇
  2006年   51篇
  2005年   35篇
  2004年   28篇
  2003年   25篇
  2002年   18篇
  2001年   13篇
  2000年   9篇
  1999年   9篇
  1998年   16篇
  1997年   5篇
  1996年   2篇
  1995年   2篇
  1994年   2篇
  1993年   3篇
  1992年   2篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
排序方式: 共有725条查询结果,搜索用时 468 毫秒
21.
阻燃剂新品种——微胶囊化TBC及其应用   总被引:6,自引:1,他引:5  
采用微胶囊包覆的方法提高了三-(2,3-二溴丙基)异氰尿酸酯(TBC)的热稳定性,对这种阻断剂新品种的制备方法,性质和用途做了介绍。  相似文献   
22.
BACKGROUND: Microencapsulation technology promises new applications such as intelligent microstructures, phase change materials and self‐healing composites. Microcapsule synthesis and characterization have been researched extensively; however, the well‐known polymerization between epoxy resins and carboxylic acids has not been used to prepare microcapsules. RESULTS: Microcapsules were prepared by interfacial polymerization of an oil‐in‐water emulsion which contained a commercial epoxy resin and multifunctional carboxylic acids. The microcapsules obtained were characterized using optical microscopy and scanning electron microscopy. Experiments performed at lower stirring rates led to larger microcapsules, in the range 100–400 µm, while higher stirring rates resulted in microcapsules in the range 10–50 µm. CONCLUSIONS: Microcapsules can be prepared by interfacial polymerization of epoxy resins, an extensively studied and widely used class of polymers. By means of NMR characterization we gained insight into the mechanism of polymerization at the interface wherein products coming from the more hindered ring opening as well as from intermolecular transesterification are identified. The presence of a crosslinker affects the morphology of the external microcapsule surface. Copyright © 2008 Society of Chemical Industry  相似文献   
23.
Nanoscale azo pigment yellow 13 (PY13) was coated by poly(styrene–maleic acid) (PSMA) with a free‐radical precipitation polymerization, followed by the preparation of the dispersion. The effects of the PSMA structure on the particle size and centrifugal stability were investigated. The experimental results revealed that the particle size was large, and the stability of the PY13/PSMA dispersions was high when the molar ratio of the feeding maleic acid to styrene, the weight ratio of the feeding initiator to monomer, and the weight ratio of the feeding monomer to pigment were about 1.0, 0.6, and 20%, respectively. Fourier transform infrared spectroscopy, dynamic light scattering, and transmission electron microscopy indicated that PY13 was coated by PSMA. The PY13/PSMA dispersion was stable in the pH range 5.6–10.5. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   
24.
分子包埋法制备姜油树脂微胶囊的研究   总被引:4,自引:0,他引:4  
以姜为原料,经乙醇直接浸泡和索氏提取法获得的姜油树脂为心材,以β-环糊精和阿拉伯胶为壁材,经乳化、均质、喷雾干燥,制取姜油树脂微胶囊,并对其主要技术参数进行了测定。通过正交试验分析,以姜油树脂的包埋率为指标,确定了心壁材比、包接温度、搅拌时间、阿拉伯胶和β-环糊精比四个因素的最佳值,得出了姜油树脂微胶囊化的最佳工艺条件。  相似文献   
25.
《Journal of dairy science》2022,105(3):1862-1877
Probiotics have received increased attention due to their nutritional and health-promoting benefits. However, their viability is often impeded during food processing as well as during their gastrointestinal transit before reaching the colon. In this study, probiotic strains Lactobacillus rhamnosus MF00960, Pediococcus pentosaceus MF000967, and Lactobacillus paracasei DSM20258 were encapsulated within sodium alginate, camel casein (CC), camel skin gelatin (CSG) and CC:CSG (1:1 wt/wt) wall materials. All 3 strains in encapsulated form showed an enhanced survival rate upon simulated gastrointestinal digestion compared with free cells. Among the encapsulating matrices, probiotics embedded in CC showed higher viability and is attributed to less porous structure of CC that provided more protection to entrapped probiotics cells. Similarly, thermal tolerance at 50°C and 70°C of all 3 probiotic strains were significantly higher upon encapsulation in CC and CC:CSG. Scanning electron microscope micrographs showed probiotic strains embedded in the dense protein matrix of CC and CSG. Fourier-transform infrared spectroscopy showed that CC- and CSG-encapsulated probiotic strains exhibited the amide bands with varying intensity with no significant change in the structural conformation. Probiotic strains encapsulated in CC and CC:CSG showed higher retention of inhibitory properties against α-glucosidase, α-amylase, dipeptidyl peptidase-IV, pancreatic lipase, and cholesteryl esterase compared with free cells upon exposure to simulated gastrointestinal digestion conditions. Therefore, CC alone or in combination with CSG as wall materials provided effective protection to cells, retained their bioactive properties, which was comparable to sodium alginate as wall materials. Thus, CC and CC:CSG can be an efficient wall material for encapsulation of probiotics for food applications.  相似文献   
26.
姜黄色素微胶囊化制备工艺的研究   总被引:3,自引:0,他引:3  
以姜黄色素为芯材,以β-环糊精及其衍生物为壁材,采用超声波水浴法系统研究了姜黄色素微胶囊化工艺条件。试验结果表明:超声波水浴法制备姜黄色素微胶囊的最佳工艺条件为:超声功率200W,包埋温度为60℃,包埋时间80min,芯壁材比为1:20。姜黄色素的包埋率可达90%以上。  相似文献   
27.
微胶囊技术及其在食品工业中应用   总被引:10,自引:0,他引:10  
该文简要介绍微胶囊技术、微胶囊化方法及微胶囊作用等,并介绍微胶囊在食品工业中应用,最后对微胶囊技术发展方向进行展望。  相似文献   
28.
维生素E微胶囊化技术的研究   总被引:11,自引:0,他引:11  
以产率、效率和维生素E的保留率作为评价指标,得出以喷雾干燥法制取维生素E微胶囊的最佳壁材配方及工艺条件。  相似文献   
29.
杜仲翅果籽油微胶囊化及抗氧化性能研究   总被引:1,自引:2,他引:1  
以β-环糊精作为微胶囊化壁材,用包络法对杜仲翅果籽油进行微胶囊化处理。采用均匀设计试验考察了微胶囊化的工艺条件,并对杜仲翅果籽油及其微胶囊化产物的抗氧化性能进行了探讨。研究结果表明:在β-环糊精用量3.0g、杜仲翅果籽油2.5ml、包络反应时间60min、包络反应温度30℃的条件下进行微胶囊化,产品收率可达83.6%,微胶囊化产物平均包络比为1.88:1,经β-环糊精微胶囊化处理后,杜仲翅果籽油具有较好的抗氧化性能。  相似文献   
30.
接骨木果油的超临界CO2流体萃取及其微胶囊技术研究   总被引:2,自引:0,他引:2  
高晓旭  戚继忠 《中国油脂》2005,30(11):68-70
用超临界CO2流体萃取技术对接骨木果油进行萃取,采用四因素三水平正交试验,探讨了萃取压力、温度、时间、CP2流量对接骨木果油萃取率的影响.研究得出最佳萃取条件为:压力30MPa,温度45℃,时间3 h,CO2流量25kg/h.以接骨木果油为心材,食用胶为壁材,经乳化、均质和喷雾干燥得接骨木果油微胶囊,包埋率可达89.6%.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号