首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7577篇
  免费   317篇
  国内免费   320篇
工业技术   8214篇
  2024年   28篇
  2023年   173篇
  2022年   234篇
  2021年   193篇
  2020年   172篇
  2019年   221篇
  2018年   114篇
  2017年   173篇
  2016年   158篇
  2015年   234篇
  2014年   436篇
  2013年   336篇
  2012年   396篇
  2011年   396篇
  2010年   351篇
  2009年   398篇
  2008年   435篇
  2007年   432篇
  2006年   378篇
  2005年   357篇
  2004年   334篇
  2003年   319篇
  2002年   215篇
  2001年   173篇
  2000年   174篇
  1999年   158篇
  1998年   125篇
  1997年   148篇
  1996年   144篇
  1995年   176篇
  1994年   122篇
  1993年   112篇
  1992年   107篇
  1991年   116篇
  1990年   70篇
  1989年   74篇
  1988年   11篇
  1987年   7篇
  1986年   2篇
  1985年   1篇
  1984年   3篇
  1982年   5篇
  1981年   1篇
  1980年   1篇
  1951年   1篇
排序方式: 共有8214条查询结果,搜索用时 31 毫秒
11.
研究了退火温度对Nb-Ti微合金化高强无取向电工钢析出物、力学性能和磁性能的影响。结果表明:随着退火温度的升高,含Nb,Ti高强无取向电工钢中的(Nb,Ti)C析出物发生回溶和粗化,(Nb, Ti)C颗粒尺寸增大和分布密度降低,其抗拉强度与屈服强度先增大后减小,磁感B_(50)先增大后减小,铁损P_(1.5/50)和P_(1.0/400)逐渐降小;此外,还添加了微量稀土(Ce),用于控制的析出物形态,改善磁性能;经860℃×5 min退火后试验钢的强度和磁性能匹配最佳。  相似文献   
12.
为解决TC4钛合金材料难加工问题,采用液体磁性磨具对TC4钛合金进行了表面加工试验。通过调整工艺参数,采用田口方法对TC4钛合金液体磁性磨具光整加工的工艺参数进行优化。采用单因素试验法,研究磨料类型、磨料粒径、工件转速和电流强度等工艺参数对液体磁性磨具光整加工TC4钛合金材料加工性能的影响,并总结各工艺参数对工件表面粗糙度的影响规律。根据信噪比的望大特性分析得出,在液体磁性磨具光整加工TC4钛合金材料的加工过程中,当使用2 000目的白刚玉,主轴转速为500 r/min,电流强度为1.5 A加工时,工件表面粗糙度相对下降率%ΔRa达到了86.10%。液体磁性磨具光整加工TC4材料表面的最优工艺参数组合为:2 000目的白刚玉,主轴转速为700 r/min,电流强度为2.0 A。同时得出各工艺参数对工件表面粗糙度相对下降率%ΔRa的影响大小依次为:磨料类型磨料粒径工件转速电流强度。当采用2 000目的白刚玉配置的磨料进行加工时,工件的表面粗糙度Ra达到了0.096μm。采用液体磁性磨具光整加工技术可以有效地降低TC4钛合金材料的表面粗糙度和提升其工件表面加工质量,显著改善了传统加工方式中存在的烧蚀和烧伤现象。  相似文献   
13.
14.
磁性树脂作为环境友好型功能性吸附材料,在水体系处理、环境修复、催化技术等领域是研究热点。携带不同功能基团与种类各异的磁性树脂对污染物展现出不同程度的去除能效。本文章阐述了磁性树脂性能的增效机制主要包括协同作用、吸附作用及再生作用,重点综述了磁性树脂的制备技术及其性能的应用进展,并结合磁性树脂已有的制备技术与实际应用现状,对其研究存在的问题及未来的研究方向进行简要的展望。  相似文献   
15.
采用水热合成法,在多壁碳纳米管(MWCNTs)表面原位生成四氧化三铁(Fe_3O_4)纳米粒子,制备碳纳米管磁性载体(MWCNTs@Fe_3O_4),再将铑(Rh)纳米粒子负载在该磁性载体上,形成新型磁性碳纳米管催化剂(MWCNTs@Fe_3O_4@Rh)。采用透射电子显微镜(TEM),X-射线粉末衍射(XRD),X射线光电子能谱(XPS)等手段表征催化剂的结构和形貌,从TEM可以看出碳纳米管缠绕在直径300nm~400nm的四氧化三铁(Fe_3O_4)纳米粒子上,并且表面负载有直径小于10nm的Rh纳米粒子。采用XRD和XPS等手段也证明Fe_3O_4以及Rh粒子的存在。同时对该催化剂在丁腈橡胶(NBR)选择性加氢方面进行探索。在120℃,4.0MPa,8h条件下,得到了氢化率达到98.17%的氢化丁腈橡胶(HNBR),该催化剂对CC双键具有良好的选择性。将制备的MWCNTs@Fe_3O_4@Rh催化剂与传统的MWCNTs负载Rh的催化剂(MWCNTs@Rh)进行循环使用,发现在重复3次之后,新型催化剂仍能达到91.53%以上的氢化度,而传统的催化剂不到40%。  相似文献   
16.
以银杏叶为原料,经化学共沉淀法制备磁性生物炭(MBC),用XRD、SEM、BET和FT-IR等对其进行表征。将MBC应用于溶液中罗丹明B(RB)的吸附去除,考察pH值、吸附时间、溶液初始浓度和MBC用量等对吸附效率的影响。结果表明,MBC是一种很好的吸附剂,负载的铁以Fe_3O_4的形式散布在生物炭表面;在初始RB浓度为100 mg/L,MBC投加量为0.2 g,吸附120 min后达到平衡,溶液中RB的去除率达到99.34%。吸附过程符合准一级动力学模型(R~2=0.9914),颗粒内扩散方程拟合结果表明MBC对RB吸附受到液膜扩散和颗粒内扩散共同主导。吸附等温线拟合发现Langmuir-Freundlich (R~2=0.9934)模型能很好地描述RB吸附行为。MBC是一种去除水体中RB的高效吸附剂。  相似文献   
17.
通过选择聚苯硫醚(PPS)、聚四氟乙烯(PTFE)、聚酰亚胺(P84)、玻纤、聚苯二甲酰苯二胺(芳砜纶)等5种袋式除尘器常用纤维针刺毡,利用共沉淀法将磁性铁酸钴纳米粒子负载到5种纤维滤料上得到磁性滤料,采用扫描电镜(SEM)、X射线衍射(XRD)、傅里叶红外光谱(FT-IR)等表征方法从滤料上纤维表面负载形貌、CoFe_2O_4结晶程度、表面官能团等方面分析比较5种不同滤料负载磁性铁酸钴纳米粒子的微观机理及性能差异,并用振动样品磁强计(VSM)测试5种不同磁性滤料的剩余磁化强度及矫顽力大小。结果表明,P84磁性滤料由于自身纤维具有较强极性官能团■、较大负载表面积等特点使得铁酸钴纳米粒子负载更加均匀、磁密度较其它纤维滤料要高,每克磁性P84滤料的剩余磁化强度及矫顽力分别为0.52×10~3 A·m~2/kg和3 940.2 A/m,这对于磁性材料捕集微细颗粒物具有重要意义。  相似文献   
18.
以四氧化三铁(Fe_3O_4)为支撑材料、鼠李糖(Rha)为模板分子、盐酸·多巴胺(DA·HCl)为功能单体,成功合成磁性表面分子印迹聚合物(Rha-MMIPs),并将其用于白头翁中白头翁皂苷B4(AB4)预富集研究。利用扫描电镜(SEM)、透射电镜(TEM)、红外光谱(FTIR)、热重分析(TGA)、磁性分析等手段对Rha-MMIPs进行表征,并对其吸附性能及重现性进行考察。结果表明,Rha-MMIPs为壳-核球型结构,热稳定性好,具有良好的吸附性能(5.79 mg/g)和快速吸附能力(60 min),对AB4的动态吸附符合准二级动力学模型,吸附过程为Langmuir单层吸附,重现性良好。将Rha-MMIPs用于白头翁中AB4的预富集,采用高效液相色谱仪(HPLC)进行检测,结果显示该聚合物可用于从复杂样品中分离富集AB4。  相似文献   
19.
通过微波合成技术制备磁性共价有机骨架材料(MCTF)。利用扫描电镜、透射电镜和傅里叶变换红外光谱仪对其形貌特征和表面基团进行表征分析,并将其用于吸附偶氮染料酸性橙7(AO7)。结果表明,MCTF为正四面体形态,单体缩合完全,磁性良好。相比于单体DCB和Fe_3O_4,MCTF的吸附能力明显上升。当MCTF、AO7的质量浓度比为40:1,pH为3.0的室温条件下,20 min内AO7的吸附率可达到100%。酸性及中性条件下更有利于AO7的吸附;水中阴离子Cl~-、SO_4~-及腐殖酸对AO7的吸附效果影响较小,但HCO_3-却具有明显的抑制作用。Langmuir模型计算得知,MCTF对于AO7的饱和吸附量为25.7 mg/g。  相似文献   
20.
高强 《江西能源》2015,(1):109-111
辽宁东方350 MW机组采暖集水箱液位自动控制,投产时设计是采用磁翻板就地液位显示加液位接点输出液位高低等信号,配合电气疏水控制系统实现水位自动控制回收系统。运行8年来,该系统经常发生由于液位接点动作故障致使液位自动控制不正常,只能靠人工定期就地控制。为了解决这个问题,从根源上进行了分析,温度是影响原磁翻板液位控制系统正常运行的主要原因,结合原设备的实际状况,在不投入大量改造的基础上又能够解决问题的前提下,利用压力液位的关系特性,提出了相应的改造方案,在实施中得到了非常好的效果,不但设备运行良好同时带来了不菲的经济效益。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号