首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1462篇
  免费   230篇
  国内免费   32篇
医药卫生   1724篇
  2024年   2篇
  2023年   38篇
  2022年   22篇
  2021年   98篇
  2020年   93篇
  2019年   109篇
  2018年   94篇
  2017年   85篇
  2016年   100篇
  2015年   136篇
  2014年   159篇
  2013年   229篇
  2012年   137篇
  2011年   113篇
  2010年   77篇
  2009年   58篇
  2008年   56篇
  2007年   42篇
  2006年   28篇
  2005年   20篇
  2004年   11篇
  2003年   6篇
  2002年   3篇
  2001年   5篇
  1999年   1篇
  1994年   1篇
  1987年   1篇
排序方式: 共有1724条查询结果,搜索用时 31 毫秒
11.
Rapidly accumulating data from large‐scale cancer genomics studies have been generating important information about genes and their somatic alterations underlying cell transformation, cancer onset and tumor progression. However, these events are usually defined by using computational techniques, whereas the understanding of their actual functional roles and impact typically warrants validation by experimental means. Critical information has been obtained from targeted genetic perturbation (gene knockout) studies conducted in animals, yet these investigations are cost‐prohibitive and time‐consuming. In addition, the 3R principles (replacement, reduction, refinement) have been set in place to reduce animal use burden and are increasingly observed in many areas of biomedical research. Consequently, the focus has shifted to new designs of innovative cell‐based experimental models of cell immortalization and transformation in which the critical cancer driver events can be introduced by mutagenic insult and studied functionally, at the level of critical phenotypic readouts. From these efforts, primary cell‐based selective barrier‐bypass models of cell immortalization have emerged as an attractive system that allows studies of the functional relevance of acquired mutations as well as their role as candidate cancer driver events. In this review, we provide an overview of various experimental systems linking carcinogen exposure‐driven cell transformation with the study of cancer driver events. We further describe the advantages and disadvantages of the currently available cell‐based models while outlining future directions for in vitro modeling and functional testing of cancer driver events.  相似文献   
12.
The precise mechanisms of tissue fibrosis have not yet been elucidated in systemic sclerosis (SSc). However, studies of the regulation of DNA methylation, the most widely studied epigenetic mechanism, have confirmed the involvement of the TET family proteins, recently identified DNA demethylases, in the pathogenesis of SSc. The mRNA levels of TET family members were compared in normal and SSc fibroblasts. The effects of hypoxia and siRNA specific to HIF‐1α on TET expression were also examined. Global methylation status was analysed by LUMA. The presence of 5‐hydroxymethylcytosine (5hmC) in SSc was examined by immunohistochemistry. The level of TET1 mRNA in SSc fibroblasts was elevated by 1.68 fold compared with that of normal fibroblasts, but the expression levels of TET2 and TET3 were comparable between both cell types. The expression levels of DNMT1 and DNMT3B mRNA have a tendency to elevate in SSc fibroblasts. Among TET family members, the expression of TET1 was exclusively induced by hypoxia via HIF‐1α‐independent pathways in SSc fibroblasts, but not in normal fibroblasts. The methylation level was decreased in SSc fibroblasts relative to normal fibroblasts, and 5hmC was present in dermal fibroblasts of skin sections from patients with SSc. TET1 expression in SSc fibroblasts was abnormally regulated in the hypoxic environment and accompanied by global DNA hypomethylation, suggesting the involvement of aberrant DNA methylation in the pathogenesis of SSc.  相似文献   
13.
14.
Evidence continues to grow on potential environmental health hazards associated with engineered nanomaterials (ENMs). While the geno- and cytotoxic effects of ENMs have been investigated, their potential to target the epigenome remains largely unknown. The aim of this study is two-fold: 1) determining whether or not industry relevant ENMs can affect the epigenome in vivo and 2) validating a recently developed in vitro epigenetic screening platform for inhaled ENMs. Laser printer-emitted engineered nanoparticles (PEPs) released from nano-enabled toners during consumer use and copper oxide (CuO) were chosen since these particles induced significant epigenetic changes in a recent in vitro companion study. In this study, the epigenetic alterations in lung tissue, alveolar macrophages and peripheral blood from intratracheally instilled mice were evaluated. The methylation of global DNA and transposable elements (TEs), the expression of the DNA methylation machinery and TEs, in addition to general toxicological effects in the lung were assessed. CuO exhibited higher cell-damaging potential to the lung, while PEPs showed a greater ability to target the epigenome. Alterations in the methylation status of global DNA and TEs, and expression of TEs and DNA machinery in mouse lung were observed after exposure to CuO and PEPs. Additionally, epigenetic changes were detected in the peripheral blood after PEPs exposure. Altogether, CuO and PEPs can induce epigenetic alterations in a mouse experimental model, which in turn confirms that the recently developed in vitro epigenetic platform using macrophage and epithelial cell lines can be successfully utilized in the epigenetic screening of ENMs.  相似文献   
15.
16.
《Immunity》2020,52(6):1057-1074.e7
  1. Download : Download high-res image (250KB)
  2. Download : Download full-size image
  相似文献   
17.
18.
19.
20.
Mammalian reproductive success depends on gonadotrophin‐releasing hormone (GnRH) neurones to stimulate gonadotrophin secretion from the anterior pituitary and activate gonadal steroidogenesis and gametogenesis. Genetic screening studies in patients diagnosed with Kallmann syndrome (KS), a congenital form of hypogonadotrophic hypogonadism (CHH), identified several causal mutations, including those in the fibroblast growth factor (FGF) system. This signalling pathway regulates neuroendocrine progenitor cell proliferation, fate specification and cell survival. Indeed, the GnRH neurone system was absent or abrogated in transgenic mice with reduced (ie, hypomorphic) Fgf8 and/or Fgf receptor (Fgfr) 1 expression, respectively. Moreover, we found that GnRH neurones were absent in the embryonic olfactory placode of Fgf8 hypomorphic mice, the putative birthplace of GnRH neurones. These observations, together with those made in human KS/CHH patients, indicate that the FGF8/FGFR1 signalling system is a requirement for the ontogenesis of the GnRH neuronal system and function. In this review, we discuss how epigenetic factors control the expression of genes such as Fgf8 that are known to be critical for GnRH neurone ontogenesis, fate specification, and the pathogenesis of KS/CHH.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号