首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   98篇
  免费   2篇
  国内免费   1篇
农业科学   101篇
  2023年   1篇
  2022年   1篇
  2021年   4篇
  2019年   4篇
  2016年   1篇
  2015年   6篇
  2014年   1篇
  2013年   10篇
  2012年   8篇
  2011年   5篇
  2010年   5篇
  2009年   3篇
  2008年   3篇
  2007年   4篇
  2006年   3篇
  2005年   4篇
  2004年   4篇
  2003年   16篇
  2002年   1篇
  2001年   8篇
  2000年   4篇
  1999年   2篇
  1991年   1篇
  1990年   1篇
  1987年   1篇
排序方式: 共有101条查询结果,搜索用时 20 毫秒
11.
采用PCR-SSCP技术分析蚯蚓粪便的微生物群落结构   总被引:1,自引:0,他引:1  
通过SDS/蛋白酶的方法抽提蚯蚓粪便微生物总DNA,以总DNA为模板,采用通用引物分别成功扩增细菌16S rRNA基因的V4-V5可变区,真菌18S rRNA基因的V8-V9可变区,应用单链构象多态性技术(SSCP)分析了蚯蚓粪便中不同空间层次的微生物种群的多样性。结果表明,在粪便的不同空间层次上呈现出明显的空间分布多样性,并且与纯蚯蚓粪微生物种群的多样性有很大的差别。为进一步的蚯蚓粪生态学功能研究提供了有益的指导。  相似文献   
12.
Goal, Scope and Background   In a preliminary ecological risk assessment, potential adverse effects of contaminants are often evaluated by measuring chemical residues and comparing these with regulatory guidelines. However limitations with this approach with regards to establishing actual effects have resulted in the increasing usage of sublethal effects-based assays, including biomarkers, to evaluate the hazard posed by contaminants in the environment. In this study a number of effects-based endpoints in the earthworm Aporrectodea caliginosa were evaluated to determine their comparative sensitivity for assessment of adverse effects of soil contaminated with petroleum hydrocarbons. Methods   Adult and juvenile earthworms were exposed for 4 weeks to sublethal concentrations of soil collected before and after remediation of a petroleum-contaminated site. A suite of endpoints were measured in these earthworms, including mortality, fecundity, growth, and juvenile maturation, and two less traditional endpoints, the biomarker, the neutral red retention assay (NRRA) and an avoidance behaviour test. Results and Discussion   Cocoon viability in this species is not a reliable parameter to measure, due to low viability in controls and a high coefficient of variation. Growth in adult earthworms was a more sensitive parameter than cocoon production. Maturation and growth of juveniles have been proposed as more sensitive endpoints than adult cocoon production and growth respectively. This was not apparent in the growth parameters, but maturation of juveniles did appear to be more sensitive than cocoon production by adults. The NRRA was a more sensitive parameter than cocoon production, and the NRRA and growth were both affected at the lowest concentration tested. The NRRA response appeared to be more sensitive than growth, but NRRT was only evaluated in one soil only, while the other parameters were assessed in two soils. However, the NRRA has previously been found to be more sensitive than growth after exposure to a number of contaminants. The avoidance behaviour assay exhibited similar sensitivity to growth and fecundity and could therefore be useful as a simple pre-screening test. Conclusion   The chronic endpoints, growth, cocoon production, and juvenile maturation parameters, were all sensitive endpoints for detecting exposure to the petroleum-hydrocarbon-contaminated soil. The NRRA was the most sensitive of the endpoints assessed and could be used as an early-warning indicator to predict adverse impacts. Avoidance behaviour could be used as a simple pre-screening test to evaluate contaminated soils prior to more extensive and invasive testing. Recommendations and Perspective   Measuring chemical concentrations in environmental samples is not always useful, as the toxicological impacts of exposure to these concentrations are not always discernible. However, the use of effects-based endpoints, either in situ or in the laboratory using laboratory-reared earthworms, can account for the bioavailability of chemicals in the soil, and can therefore provide information on the toxicological impacts of exposure. The assays tested in this research were sensitive indicators of exposure, and therefore can be used to determine potential ecological risks at contaminated sites and to monitor the progress of remediation at these sites.  相似文献   
13.
采用室内试验的方法研究不同接种方式接种威廉环毛蚓(Pheretima guillelmi)、植物促生根际细菌(钾活化细菌(Bacillus mucilaginous PDSK-1)和固氮细菌(Azotobacter chroococcum PDSN-5))对土壤中固氮细菌和钾活化细菌的生长、土壤脲酶的活性以及土壤钾有效性的影响.7种接种方式均明显增加了土壤中固氮细菌和钾活化细菌的生长.蚯蚓活动对土壤中固氮细菌生长的影响有限,但明显增加了钾活化细菌的生长.接种蚯蚓、接种固氮细菌、接种蚯蚓和固氮细菌均明显增加了土壤中脲酶的活性.土壤中脲酶活性和速效钾的浓度分别与土壤中固氮细菌与钾活化细菌的数量成显著正相关关系(P<0.05).试验结果表明,混合接种方式是一种有潜力的生物技术,可以用来减少农业生产中化肥的施用量.  相似文献   
14.
为探讨老化行为对多氯联苯(Polychlorinated biphenyls,PCBs)在土壤中的可提取性和生物可利用性的影响,选取2,2′,3,4,4′,5-六氯联苯(PCB138)作为目标污染物,进行90 d的老化试验,比较了超纯水提取、正丁醇溶液提取、超声提取(正己烷/丙酮)和索氏抽提(正己烷/二氯甲烷)等4种方法对土壤中不同老化时间PCB138的提取率;以赤子爱胜蚓(Eisenia fetida)为土壤模式参照生物,在不同的老化时间里测定蚯蚓体内PCB138的含量与脂肪含量。结果表明,4种方法提取PCB138的能力依次为索氏抽提(正己烷/二氯甲烷)≈超声提取(正己烷/丙酮)正丁醇提取超纯水溶液提取;索氏抽提、超声提取和正丁醇溶液提取的提取率从最初的87%~93%、85%~90%、50%~60%分别下降到70%~76%、65%~73%、25%~45%,在30~45 d时总提取量保持稳定,而超纯水提取PCB138的量有限,显示出最低的提取能力且为非重复性结果。PCB138在蚯蚓体内富集量随接触时间增加而增加,在老化30 d左右其体内PCB138富集量最大;在老化30~60 d时,蚯蚓体内的PCB138的含量逐渐下降,健康状况良好的蚯蚓脂肪含量有所下降但不明显。正丁醇溶液提取、超声提取和索氏抽提对PCB138的提取率,以及老化土壤中蚯蚓对PCB138的富集量,均说明PCB138在土壤中的生物有效性随着老化时间的延长而降低。  相似文献   
15.
Abstract

The forest floor litter decomposition rate followed in the order: Tectona grandis(teak) > Madhuka indica (mahua) > Butea monosperma (palas). Higher decomposition rates were observed during rainy season and lowest during winter. The decay rate was significantly correlated with rainfall and soil moisture, and with population densities of earthworms. The lumbricid distribution under three plantations of semi-arid and sub-humid regions of central India in relation to several environmental factors including climate, soil moisture and litter quality was studied. Native species of earthworms and their densities were not abundant in this forest due to less moisture content in soil and accidental forest fires. Eight earthworms were identified and three of them were epigeic earthworms, viz., Eisenia fetida (Savigny), Perionyx excavatus (Perrier) and Dichogaster bolaui (Michaelsen), which were predominant throughout the year.  相似文献   
16.
The exotic earthworm invasion in hardwood forests of the northern United States is associated with many ecosystem-level changes. However, less is known about the effects of the invasion on the composition of the soil microbial community through which ecosystem-level changes are mediated. Further, earthworm effects on soil microbial community composition have not been well studied in the field. To evaluate changes in bacterial and fungal abundance associated with the earthworm invasion we quantified bacterial and fungal biomass by microscopic counts in paired earthworm-invaded (earthworm) and earthworm-free (reference) plots in five forest stands in central New York (USA). Earthworms significantly increased the ratio of bacteria to fungi on an area basis (per m2), by more than two times in mid-summer and early autumn. While this effect was associated primarily with the lack of the fungal-dominated organic horizon in earthworm plots, a higher ratio of bacteria to fungi in the surface 5 cm mineral soil also contributed as it developed between spring and mid-summer. Earthworm reduction of fungal biomass was confirmed by substantially lower growth of fungal hyphae into mesh sand bags in earthworm compared to reference plots. Burrowing activity by the earthworm Lumbricus terrestris increased the ratio of bacteria to fungi over the short-term within earthworm plots, introducing small-scale spatial heterogeneity associated with burrows. Our study suggests that the exotic earthworm invasion in these northern hardwood forests markedly increased the ratio of bacteria to fungi by eliminating the fungal-rich organic horizon, and was associated localized increases in bacterial vs. fungal abundance in mineral soil, setting the stage for future research into linkages between the earthworm invasion, bacterial and fungal abundance, and ecosystem processes.  相似文献   
17.
This study was conducted to improve our understanding of how earthworms and microorganisms interact in the decomposition of litter of low quality (high C : N ratio) grown under elevated atmospheric [CO2]. A microcosm approach was used to investigate the influence of endogeic earthworm (Aporrectodea caliginosa Savigny) activity on the decomposition of senescent Charlock mustard (Sinapis arvensis L.) litter produced under ambient and elevated [CO2]. Earthworms and microorganisms were exposed to litter which had changed in quality (C : N ratio) while growing under elevated [CO2]. After 50 d of incubation in microcosms, C mineralization (CO2 production) in the treatment with elevated‐[CO2] litter was significantly lower in comparison to the ambient‐[CO2] litter treatment. The input of Charlock mustard litter into the soil generally induced N immobilization and reduced N2O‐emission rates from soil. Earthworm activity enhanced CO2 production, but there was no relationship to litter quality. Although earthworm biomass was not affected by the lower quality of the elevated‐[CO2] litter, soil microbial biomass (Cmic, Nmic) was significantly decreased. Earthworms reduced Cmic and fungal biomass, the latter only in treatments without litter. Our study clearly showed that A. caliginosa used the litter grown under different [CO2] independent of its quality and that their effect on the litter‐decomposition process was also independent of litter quality. Soil microorganisms were shown to negatively react to small changes in Charlock mustard litter quality; therefore we expect that microbially mediated C and N cycling may change under future atmospheric [CO2].  相似文献   
18.
In a 1-year laboratory study of the New Zealand flatworm Arthurdendyus triangulatus, individual growth, degrowth and regrowth were manipulated via the feeding regime, with the compost worm Eisenia fetida as prey. A mean growth rate of 25 mg live weight wk—1 was evident, individual rates ranging between 18 and 38 mg wk−1. Degrowth was associated with egg capsule deposition for which the maximum rate was 0.5 capsules wk−1. The more egg capsules produced, the greater the adult weight loss, degrowth rates ranging from 8 to 55 mg wk−1. Change in flatworm body weight (gain/loss) also correlated with the length of the food introduction interval, though weight could be maintained for circa 2 weeks. Weight loss was not simply a function of hunger, voluntary cessation of feeding (possibly related to egg capsule production) being a confounding factor. During the growth phase, individual predation rate ranged from 0.9 to 1.1 earthworms wk−1, rate of tissue consumption ranging from 346 to 485 mg wk−1. Conversion efficiencies of earthworm to flatworm tissue were estimated to range between 3.8% and 10.7%. The impact of this exotic planarian on earthworm populations is discussed.  相似文献   
19.
20.
Earthworm activity is observed at long‐term monitoring sites as an indicator of soil function to assess changes resulting from environmental and management conditions. In order to assess changes, characteristic values of earthworm populations under different site conditions have to be known. Therefore, a classification scheme for site‐specific earthworm populations was developed for soil in agricultural use, taking interactions between earthworm populations and soil properties into account. Characteristics of sites grouped by means of a cluster analysis after principal‐component analysis served as a basis for the derivation of the classification scheme. Soil variables found to characterize site differences with respect to earthworm populations were the texture of the topsoil, the texture of the subsoil, and the soil organic‐matter (SOM) content. The textural classes of the topsoil were divided into five groups comprising sandy soils (Ss), silty sand soils (Su), slightly loamy sand soils (Sl2), medium to strongly loamy sand soils (Sl3/Sl4), and loam and clay soils. Soil organic matter was divided into grades of equal size in a range from <1%, 1%–2% up to >6%. The variables “earthworm abundance” and “earthworm species” were selected to represent earthworm populations and were divided into six groups ranging from very low to extremely high. Defined groups of earthworm populations showed a clear structure in relation to soil textural groups and the content of SOM. From this distribution, a classification scheme was derived as basis for prognostic values of site‐specific earthworm populations, thus enabling the interpretation of changes over time. For some soil textural groups, selected variables appeared to enable the derivations of expected earthworm densities and species composition outside the range of the given database, but for some soil textural groups, broader databases will be needed to specify these derivations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号