首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6183篇
  免费   186篇
  国内免费   302篇
生物科学   6671篇
  2023年   39篇
  2022年   50篇
  2021年   59篇
  2020年   76篇
  2019年   120篇
  2018年   123篇
  2017年   86篇
  2016年   109篇
  2015年   121篇
  2014年   231篇
  2013年   420篇
  2012年   151篇
  2011年   250篇
  2010年   167篇
  2009年   285篇
  2008年   278篇
  2007年   338篇
  2006年   265篇
  2005年   275篇
  2004年   249篇
  2003年   237篇
  2002年   198篇
  2001年   134篇
  2000年   138篇
  1999年   126篇
  1998年   146篇
  1997年   141篇
  1996年   124篇
  1995年   163篇
  1994年   149篇
  1993年   151篇
  1992年   123篇
  1991年   104篇
  1990年   118篇
  1989年   102篇
  1988年   103篇
  1987年   88篇
  1986年   93篇
  1985年   91篇
  1984年   110篇
  1983年   45篇
  1982年   55篇
  1981年   53篇
  1980年   58篇
  1979年   28篇
  1978年   30篇
  1977年   20篇
  1976年   18篇
  1975年   15篇
  1973年   8篇
排序方式: 共有6671条查询结果,搜索用时 31 毫秒
111.
Evidence is presented here that axenic cultures of Nostoc spp., Aphanocapsa (PCC 6308), and Aphanocapsa (PCC 6714) but not Anacystis nidulans R-2 (PCC 7942) produce N2O and ammonia when grown on nitrite. The data suggest that the cyanobacteria produce N2O by nitrite reduction to ammonia.Nonstandard abbreviations DCMU 3-(3,4-dichlorophenyl)-1,1-dimethyl urea - NIR nitrite reductase  相似文献   
112.
Two of nine sulfate reducing bacteria tested,Desulfobulbus propionicus andDesulfovibrio desulfuricans (strain Essex 6), were able to grow with nitrate as terminal electron acceptor, which was reduced to ammonia. Desulfovibrio desulfuricans was grown in chemostat culture with hydrogen plus limiting concentrations of nitrate, nitrite or sulfate as sole energy source. Growth yields up to 13.1, 8.8 or 9.7 g cell dry mass were obtained per mol nitrate, nitrite or sulfate reduced, respectively. The apparent half saturation constants (K s) were below the detection limits of 200, 3 or 100 mol/l for nitrate, nitrite of sulfate, respectively. The maximum growth rates {ie63-1} raised from 0.124 h-1 with sulfate and 0.150 h-1 with nitrate to 0.193 h-1 with nitrite as electron acceptor. Regardless of the electron acceptor in the culture medium, cell extracts exhibited absorption maxima corresponding to cytochromec and desulfoviridin. Nitrate reductase was found to be inducible by nitrate or nitrite, whereas nitrite reductase was synthesized constitutively. The activities of nitrate and nitrite reductases with hydrogen as electron donor were 0.2 and 0.3 mol/min·mg protein, respectively. If limiting amounts of hydrogen were added to culture bottles with nitrate as electron acceptor, part of the nitrate was only reduced to the level of nitrite. In media containing nitrate plus sulfate or nitrite plus sulfate, sulfate reduction was suppressed.The results demonstrate that the ammonification of nitrate or nitrite can function as sole energy conserving process in some sulfate-reducing bacteria.  相似文献   
113.
114.
Abstract Sporopachydermia cereana , an ascosporogenous yeast, grew on dimethylamine, trimethylamine or trimethylamine N -oxide as sole nitrogen sources and produced mono-oxygenases for dimethylamine and trimethylamine that were significantly more stable than the corresponding enzymes found in Candida utilis . No trimethylamine mono-oxygenase activity was found in S. cereana grown on dimethylamine. In cells grown on trimethylamine N -oxide (but not on the other nitrogen sources), evidence for an enzyme metabolizing the N -oxide, possibly an aldolase, but more probably a reductase was obtained. All these activities showed a similar requirement for the presence of FAD or FMN in the extract buffer during isolation to retain activity. Amine mono-oxygenase activities showed a similar sensitivity to inhibitors, including proadifen hydrochloride and carbon monoxide as the corresponding enzymes in C. utilis . The trimethylamine N -oxide-dependent oxidation of NADH was more sensitive to inhibition by EDTA, N -ethylmaleimide and β-phenylethylamine than the mono-oxygenases, and less sensitive to KCN, and activity was significantly higher with NADPH than was observed with the 2 mono-oxygenases.  相似文献   
115.
Abstract Nitrate reduction to ammonia by marine Vibrio species was studied in batch and continuous culture. In pH-controlled batch cultures (pH 7.4; 50 mM glucose, 20 mM KNO3), the nitrate consumed accumulated to more than 90% as nitrite. Under these conditions, the nitrite reductase (NO2→ NH3) was severely repressed. In pH-controlled continuous cultures of V. alginolyticus with glucose or glycerol as substrates ( D = 0.045 h−1) and limiting N-source (nitrate or nitrite), nitrite reductase was significantly derepressed with cellular activities in the range of 0.7–1.2 μmol min−1 (mg protein)−1. The enzyme was purified close to electrophoretic homogeneity with catalytic activity concentrations of about 1800 nkat/mg protein. It catalyzed the reduction of nitrite to ammonia with dithionite-reduced viologen dyes or flavins as electron donors, had an M r of about 50 000 (determined by gel filtration) and contained c-type heme groups (probably 4–6 per molecule).  相似文献   
116.
The electron-transport chain catalyzing fumarate reduction by formate has recently been reconstituted from the formate dehydrogenase complex and the fumarate reductase complex from Vibro succinogenes, in a liposomal preparation containing vitamin K-1 (Unden, G. and Kröger, A. (1982) Biochim. Biophys. Acta 682, 258–263). We have now investigated the structural properties of this preparation. The preparation was found to consist of a homogeneous population of unilamellar proteoliposomes with an average diameter of about 100 nm and an internal volume of 2–4 ml / g phospholipid. The buoyant density (1.07 g / ml) was consistent with the protein / phospholipid ratio (0.2 g / g) of the preparation. Leakage of glucose from the internal spaces of the proteoliposomes was negligibly slow. Proteoliposomes prepared with either of the enzyme complexes showed peripheral projections mainly on the outer surface, when examined by electron microscopy after negative staining. The size, orientation and surface density of the projections were consistent with those of the enzymes. Most of the substrate and dye-reactive sites (70–90%) of the enzymes in the proteoliposomes were accessible to external non-permeant substrates. The proteoliposomes catalyzing electron transport were formed by freeze-thawing a mixture of liposomes and protein-phospholipid complexes which did not perform electron transport from formate to fumarate. Nearly the entire amount of the enzymes supplied (0.2 g protein / g phospholipid) was incorporated into the liposomes by this procedure. The transformation of liposomes into proteoliposomes was accompanied by exchange of the internal solutes with the external medium.  相似文献   
117.
Abstract: Aldehyde dehydrogenase (ALDH) activity was measured in brains, livers, and hearts of 23–26-month-old and 3-month-old rats. A significant increase of ALDH activity was found in whole brain of old rats with both acetaldehyde (39%) and propionylaldehyde (15%) used as substrates. In different brain areas of old rats, with acetaldehyde used as substrate, a significant increase of ALDH activity was found in striatum (30–50%) and cerebral cortex (37%). However, no significant difference in ALDH activity was found in livers and hearts of young and old rats. Preliminary experiments showed a significant increase of aldehyde reductase activity (52%) with p -nitrobenzaldehyde used as substrate in whole brain of old rats compared with young rats. The present work indicates that an increase of ALDH activity in brain of old rats may be an adaptive phenomenon.  相似文献   
118.
The supply of sucrose to leaf segments from light-grown bean seedlings caused a substantial increase in substrate inducibility of in vivo and in vitro nitrate reductase activity but only a small increase in total protein. Cycloheximide and chloramphenicol inhibited the increase in enzyme activity by nitrate and sucrose. The in vivo decline in enzyme activity in nitrate-induced leaf segments in light and dark was protected by sucrose and nitrate. The supply of NADH also protected the decline in enzyme activity, but only in the light. In vitro stability of the extracted enzyme was, however, unaffected by sucrose. The size of the metabolic nitrate pool was also enhanced by sucrose. The experiments demonstrate that sucrose has a stimulatory effect on activity or in vivo stability ' of nitrate reductase in bean leaf segments, which is perhaps mediated through increased NADH level and/or mobilization of nitrate to the metabolic pool.  相似文献   
119.
In rye leaves ( Secale cereale L. cv. Petkus "Kustro") bleached in the presence of the chlorosis-inducing herbicides aminotriazole, haloxidine, San 6706 or difunone in white light of 54.2 W m-2 (5000 lx), catalase activity was very low. In addition, the activities of glycolate oxidase and hydroxypyruvate reductase were strongly diminished in treatments with San 6706 and difunone. The lowering of the peroxisomal enzyme activities was observed in red, but not in blue light and did not occur after treatment with the non-bleaching pyridazinone derivative San 9785. The deficiencies of the peroxisomal enzymes did not appear to be involved in the initiation of the chlorosis. Instead they are probably produced as secondary consequences of the bleaching. Low peroxisomal enzyme activities were also obtained without herbicide treatment by growing the leaves in an atmosphere of 2% O2 and 3% CO2, but in this case were not accompanied by an increased sensitivity of the Chl to photooxidative bleaching. The peroxisomal enzymes reached as high activities as in untreated controls when the herbicide-treated leaves were grown at a low light intensity of 0.106 W m-2 (10 lx). After transfer of herbicide-treated leaves grown under 0.106 W m-2 to 306 W m-2 (30 000 lx), catalase was strongly inactivated, even at 0°C. In treatments with San 6706 and difunone the increase of the activities of glycolate oxidase and hydroxypyruvate reductase was either stopped, remaining unchanged, or the enzymes were slightly inactivated after exposure to 306 W m-2 (30 000 lx). The observations suggest that the inactivation of peroxisomal enzymes results from photooxidative events in the chloroplasts.  相似文献   
120.
Apple trees ( Malus pumila Mill . var. domestica Fuji/ Malus prunifolia rootstock) showed a high susceptibility to bitter pit when supplyed with ammonium salt instead of nitrate (control) in the nutrient solution. When apple fruit was affected by bitter pit, a lower calcium as well as a higher nitrogen and ammonium-nitrogen contents was observed in the fruit flesh near the calyx end. The activity of the mitochondrial Ca2+-uptake of the fruit flesh near the calyx end was higher when the tree was grown with ammonium salt than when grown with nitrate. Both the activities of succinate: cytochrome c oxidoreductase and the mitochondrial Ca2+-uptake per g of tissue were higher in affected fruit than in healthy fruit. Each of chlorpromazine, N-(6-aminohexyl)-5-chloro-l-napthalenesulfonamide (W-7) and N-(6-aminohexyl)-l-naphthalenesulfonamide (W-5), calmodulin antagonists, was infiltrated into the fruit for 20 min under reduced pressure (about 1 × 104 Pa). Few days later, numerous bitter pit-like spots were observed in both fruit treated with W-7 and chlorpromazine, while only a few spots were observed after the infiltration with W-5, a less potent calmodulin antagonist. A possible mechanism for the occurrence of bitter pit is discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号