首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   260篇
  免费   13篇
  国内免费   15篇
生物科学   288篇
  2023年   4篇
  2022年   1篇
  2021年   5篇
  2020年   4篇
  2019年   4篇
  2018年   3篇
  2017年   4篇
  2016年   2篇
  2015年   6篇
  2014年   2篇
  2013年   7篇
  2012年   5篇
  2011年   4篇
  2010年   1篇
  2009年   7篇
  2008年   8篇
  2007年   11篇
  2006年   20篇
  2005年   17篇
  2004年   16篇
  2003年   11篇
  2002年   15篇
  2001年   17篇
  2000年   16篇
  1999年   13篇
  1998年   9篇
  1997年   9篇
  1996年   13篇
  1995年   10篇
  1994年   10篇
  1993年   5篇
  1992年   1篇
  1991年   9篇
  1990年   7篇
  1989年   3篇
  1988年   3篇
  1987年   3篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
排序方式: 共有288条查询结果,搜索用时 15 毫秒
31.
32.
Hybridization may lead to unique phytochemical expression in plant individuals. Hybrids may express novel combinations or extreme concentrations of secondary metabolites or, in some cases, produce metabolites novel to both parental species. Here we test whether there is evidence for extreme metabolite expression or novelty in F1 hybrids between Senecio aquaticus and Senecio jacobaea. Hybridization is thought to occur frequently within Senecio, and hybridization might facilitate secondary metabolite diversification within this genus. Parental species express different quantities of several classes of compounds known to be involved in antiherbivore defence, including pyrrolizidine alkaloids, chlorogenic acid, flavonoids and benzoquinoids. Hybrids demonstrate differential expression of some metabolites, producing lower concentrations of amino acids, and perhaps flavonoids, than either parental species. Despite evidence for quantitative hybrid novelty in this system, NMR profiling did not detect any novel compounds among the plant groups studied. Metabolomic profiling is a useful technique for identifying qualitative changes in major metabolites according to plant species and/or genotype, but is less useful for identifying small differences between plant groups, or differences in compounds expressed in low concentrations.  相似文献   
33.
The fungus Pisolithus microcarpus establishes an ectomycorrhiza with Eucalyptus globulus. This symbiosis involves a fungal synthesis and secretion of hypaphorine, an indolic compound. Previous studies have shown that hypaphorine induces an alteration in the actin cytoskeleton of elongating root hairs and inhibits hair elongation. Using an alternative approved method, we analyzed the effects of hypaphorine on the E. globulus root hair cyto-architecture and actin configuration in more detail and provide new results. One mM hypaphorine stops root hair elongation within 20 min, and changes the hair cyto-architecture. Semi-quantitative analysis of the actin cytoskeleton before and after treatment with hypaphorine shows that hypaphorine induces a shift from fine F-actin to F-actin bundles in the sub-apex of the hair, which occurs first in the mid-plane of the cell. This creates a sub-apical cell centre free of filamentous actin, an actin configuration that differs from that during developmental growth arrest. The mechanism of action of hypaphorine is discussed.  相似文献   
34.
Extensive knowledge of various ectomycorrhizal fungal communities has been obtained over the past 10 years based on molecular identification of the fungi colonizing fine roots. In contrast, only limited information exists about the species composition of ectomycorrhizal hyphae in soil. This study compared the ectomycorrhizal external mycelial community with the adjacent root-tip community in a Danish beech forest. Sand-filled in-growth mesh bags were used to trap external mycelia by incubating the mesh bags in the soil for 70 days. The adjacent ectomycorrhizal root-tip communities were recorded at the times of insertion and retrieval of the mesh bags. Ectomycorrhizal fungi were identified by sequencing the internal transcribed spacer region. In total, 20, 31 and 24 ectomycorrhizal species were recorded from the two root-tip harvests and from the mesh bags, respectively. Boletoid species were significantly more frequent as mycelia than as root tips, while russuloid and Cortinarius species appeared to be less dominant as mycelia than as root tips. Tomentella species were equally frequent as root tips and as mycelia. These discrepancies between the root-tip and the mycelial view of the ectomycorrhizal fungal community are discussed within the framework of ectomycorrrhizal exploration types.  相似文献   
35.
Constraints on plant growth imposed by low availability of nitrogen are a characteristic feature of ecosystems dominated by ectomycorrhizal plants. Ectomycorrhizal fungi play a key role in the N nutrition of plants, allowing their host plants to access decomposition products of dead plant and animal materials. Ectomycorrhizal plants are thus able to compensate for the low availability of inorganic N in forest ecosystems. The capacity to take up peptides, as well as the transport mechanisms involved, were analysed in the ectomycorrhizal fungus Hebeloma cylindrosporum. The present study demonstrated that H. cylindrosporum mycelium was able to take up di- and tripeptides and use them as sole N source. Two peptide transporters (HcPTR2A and B) were isolated by yeast functional complementation using an H. cylindrosporum cDNA library, and were shown to mediate dipeptide uptake. Uptake capacities and expression regulation of both genes were analysed, indicating that HcPTR2A was involved in the high-efficiency peptide uptake under conditions of limited N availability, whereas HcPTR2B was expressed constitutively.  相似文献   
36.
Alnicola (=Naucoria, pro parte) is a mushroom genus of strictly temperate, obligately ectomycorrhizal species, traditionally included in the family Cortinariaceae. Most Alnicola spp. are primarily host specific on Alnus, although a few are mycobionts of Salix or other hosts. The different species of Alnicola exhibit unique morphological (cystidia, pileipellis) and cytological (dikaryotic or monokaryotic hyphae) characters. This makes the genus Alnicola of particular interest for studying the evolution of host specificity and morphological characters in ectomycorrhizal basidiomycetes. We used a combination of classical morphological and phylogenetic methods (rDNA ITS and LSU sequences) to address the following questions: (i) Is Alnicola monophyletic? And (ii) Are characters like host specificity or microscopical structures synapomorphic for certain clades? The study included nearly all currently known European Alnicola sp. Our results demonstrated that, on one hand, the genus Alnicola is polyphyletic, with sistergroup relationships to Hebeloma, Anamika or the clades /Hymenogaster I and /Hymenogaster II. On the other hand, Alnicola splits into three well-supported clades corresponding to the sections Alnicola, Submelinoides, and Salicicolae. The strict host-specificity to Alnus is a derived character and has occurred at least twice. The following morphological characters are synapomorphic for defined clades: the spindle-shaped hymenial cystidia for sect. Alnicola, the hymeniform pileipellis for sect. Submelinoides, and monocaryotic/clampless hyphae for sect. Salicicolae and its sistergroup /Hymenogaster II. As a taxonomical consequence, polyphyly of Alnicola implies that the sects. Submelinoides and Salicicolae need to be segregated from Alnicola.  相似文献   
37.
Forested ecosystems diversified more than 350 Ma to become major engines of continental silicate weathering, regulating the Earth''s atmospheric carbon dioxide concentration by driving calcium export into ocean carbonates. Our field experiments with mature trees demonstrate intensification of this weathering engine as tree lineages diversified in concert with their symbiotic mycorrhizal fungi. Preferential hyphal colonization of the calcium silicate-bearing rock, basalt, progressively increased with advancement from arbuscular mycorrhizal (AM) to later, independently evolved ectomycorrhizal (EM) fungi, and from gymnosperm to angiosperm hosts with both fungal groups. This led to ‘trenching’ of silicate mineral surfaces by AM and EM fungi, with EM gymnosperms and angiosperms releasing calcium from basalt at twice the rate of AM gymnosperms. Our findings indicate mycorrhiza-driven weathering may have originated hundreds of millions of years earlier than previously recognized and subsequently intensified with the evolution of trees and mycorrhizas to affect the Earth''s long-term CO2 and climate history.  相似文献   
38.
Different symbiotic mycorrhizal associations between plantsand fungi occur, almost ubiquitously, in a wide range of terrestrialecosystems. Historically, these have mainly been consideredwithin the rather narrow perspective of their effects on theuptake of dissolved mineral nutrients by individual plants.More recent research has placed emphasis on a wider, multifunctionalperspective, including the effects of mycorrhizal symbiosison plant and microbial communities, and on ecosystem processes.This includes mobilization of N and P from organic polymers,release of nutrients from mineral particles or rock surfacesvia weathering, effects on carbon cycling, interactions withmyco-heterotrophic plants, mediation of plant responses to stressfactors such as drought, soil acidification, toxic metals, andplant pathogens, as well as a range of possible interactionswith groups of other soil micro-organisms. Mycorrhizal fungiconnect their plant hosts to the heterogeneously distributednutrients required for their growth, enabling the flow of energy-richcompounds required for nutrient mobilization whilst simultaneouslyproviding conduits for the translocation of mobilized productsback to their hosts. In addition to increasing the nutrientabsorptive surface area of their host plant root systems, theextraradical mycelium of mycorrhizal fungi provides a directpathway for translocation of photosynthetically derived carbonto microsites in the soil and a large surface area for interactionwith other micro-organisms. The detailed functioning and regulationof these mycorrhizosphere processes is still poorly understoodbut recent progress is reviewed and potential benefits of improvedunderstanding of mycorrhizosphere interactions are discussed. Key words: Arbuscular mycorrhiza, biotic interactions, carbon flow, ectomycorrhiza, ericoid mycorrhiza, mycelium, nutrient uptake, symbiosis, weathering Received 22 January 2008; Revised 7 February 2008 Accepted 7 February 2008  相似文献   
39.
40.
Pinus pinaster seedlings were grown in a sandy dune soil either inoculated withHebeloma cylindrosporum or let to natural colonisation. Six months later, half of the seedlings of both treatments were subjected to a 3-week moderate drought. Root colonisation analysis showed that root tips were colonised to almost 100% independent of the inoculation. DNA determination of the ectomycorrhizal morphotypes showed that inoculated seedlings were extensively mycorrhized byH. cylindrosporum (more than 75%) whereas non-inoculated seedlings were mycorrhized by the exotic speciesThelephora terrestris (50%) andLaccaria bicolor (30%) and to a lesser extent byH. cylindrosporum (20%). Drought did not affect these frequencies. Total plant biomass was not affected by the mycorrhizal status or by drought but the root/shoot biomass ratio as well as the root/leaf surface area ratio were much lower in seedlings extensively colonised byH. cylindrosporum. Root hydraulic conductivity was higher in plants mainly mycorrhized byH. cylindrosporum, showing that this fungus improved the water uptake capacity of the root system as compared toT. terrestris and/orL. bicolor. This positive effect was also found under drought but to a lesser extent.H. cylindrosporum also increased the amount of root-adhering soil as compared to the other fungal symbionts, illustrating the performance of this association in aggregating sandy soil particles and developing the rhizosheath. The origin of the reduced root hydraulic resistance byH. cylindrosporum mycorrhization is discussed for the whole path including soil, soil-root interface and root cortex.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号