首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   435篇
  免费   9篇
  国内免费   8篇
生物科学   452篇
  2023年   3篇
  2021年   5篇
  2020年   4篇
  2019年   13篇
  2018年   27篇
  2017年   2篇
  2016年   5篇
  2015年   8篇
  2014年   24篇
  2013年   31篇
  2012年   23篇
  2011年   30篇
  2010年   22篇
  2009年   19篇
  2008年   25篇
  2007年   16篇
  2006年   18篇
  2005年   10篇
  2004年   10篇
  2003年   11篇
  2002年   6篇
  2001年   7篇
  2000年   10篇
  1999年   4篇
  1998年   9篇
  1997年   7篇
  1996年   7篇
  1995年   6篇
  1994年   7篇
  1993年   3篇
  1992年   3篇
  1991年   3篇
  1990年   3篇
  1988年   4篇
  1987年   2篇
  1985年   4篇
  1984年   6篇
  1983年   11篇
  1982年   7篇
  1981年   3篇
  1980年   4篇
  1979年   8篇
  1978年   4篇
  1977年   5篇
  1976年   4篇
  1975年   2篇
  1974年   1篇
  1973年   1篇
  1972年   2篇
  1971年   1篇
排序方式: 共有452条查询结果,搜索用时 31 毫秒
61.
GPR119 receptor has been proposed as a metabolic regulator playing a pivotal role in the modulation of glucose homeostasis in type 2 diabetes. GPR119 was identified on pancreatic β cells and its ligands have the ability to enhance glucose-stimulated insulin secretion (GSIS). Lysophosphatidylcholine (LPC) was shown to potentiate GSIS and our present studies indicate that 2-methoxy-lysophosphatidylcholine (2-OMe-LPC) analogues, unable to undergo 1  2 acyl migration, stimulate GSIS from murine βTC-3 pancreatic cells even more efficiently. Moreover, biological assays in engineered Tango? GPR119-bla U2OS cells were carried out to ascertain the agonist activity of 2-OMe-LPC at GPR119. 2-OMe-LPC possessing in sn-1 position the residues of myristic, palmitic, stearic and oleic acid were also evaluated as factors regulating [Ca2 +]i mobilization and cAMP levels. Extension of these studies to R- and S-enantiomers of 14:0 2-OMe-LPC revealed that the overall impact on GSIS does not depend on chirality, however, the intracellular calcium mobilization data show that the R enantiomer is significantly more active than S one. Taking into account differences in chemical structure between various native LPCs and their 2-methoxy counterparts the possible binding mode of 2-OMe-LPC to the GPR119 receptor was determined using molecular modeling approach.  相似文献   
62.
We synthesized six novel BBR derivatives that were designed to avoid metabolic activation via ipso-substitution and evaluated for their degree of toxicity and hURAT1 inhibition. It was found that all of the derivatives demonstrate lower cytotoxicity in mouse hepatocytes and lower levels of metabolic activation than BBR, while maintaining their inhibitory activity toward the uric acid transporter. We propose that these derivatives could serve as effective uricosuric agents that have much better safety profiles than BBR.  相似文献   
63.

Background

Marijuana consumption is on the rise in the US but the health benefits of cannabis smoking are controversial and the impact of cannabis components on lung homeostasis is not well-understood. Lung function requires a fine regulation of the ion channel CFTR, which is responsible for fluid homeostasis and mucocilliary clearance. The goal of this study was to assess the effect that exposure to Δ9-tetrahydrocannabinol (THC), the psychoactive substance present in marijuana, has on CFTR expression and function.

Methods

Cultures of human bronchial epithelial cell line 16HBE14o- and primary human airway epithelial cells were exposed to THC. The expression of CFTR protein was determined by immunoblotting and CFTR function was measured using Ussing chambers. We also used specific pharmacological inhibitors of EGFR and ERK to determine the role of this pathway in THC-induced regulation of CFTR.

Results

THC decreased CFTR protein expression in primary human bronchial epithelial cells. This decrease was associated with reduced CFTR-mediated short-circuit currents. THC also induced activation of the ERK MAPK pathway via activation of EGFR. Inhibition of EGFR or MEK/ERK prevented THC-induced down regulation of CFTR protein expression.

Conclusions and general significance

THC negatively regulates CFTR and this is mediated through the EGFR/ERK axis. This study provides the first evidence that THC present in marijuana reduces the expression and function of CFTR in airway epithelial cells.  相似文献   
64.
Rheumatoid arthritis (RA) is a chronic autoimmune systemic inflammatory disease that is characterized by synovial inflammation and bone erosion. We have investigated the mechanism(s) by which essential trace metals may initiate and propagate inflammatory phenotypes in synovial fibroblasts. We used HIG-82, rabbit fibroblast-like synovial cells (FLS), as a model system for potentially initiating RA through oxidative stress. We used potassium peroxychromate (PPC, Cr+5), ferrous chloride (FeCl2, Fe+2), and cuprous chloride (CuCl, Cu+) trace metal agents as exogenous pro-oxidants. Intracellular ROS was quantified by fluorescence microscopy and confirmed by flow cytometry (FC). Protein expression levels were measured by western blot and FC, while ELISA was used to quantify the levels of cytokines. Trace metal agents in different valence states acted as exogenous pro-oxidants that generate reactive oxygen species (ROS), which signal through TLR4 stimulation. ROS/TLR4- coupled activation resulted in the release of HMGB1, TNF-α, IL-1β, and IL-10 in conjunction with upregulation of myeloid-related protein (MRP8/14) inflammatory markers that may contribute to the RA pathophysiology. Our results indicate that oxidant-induced TLR4 activation can release HMGB1 in combination with other inflammatory cytokines to mediate pro-inflammatory actions that contribute to RA pathogenesis. The pathway by which inflammatory and tissue erosive changes may occur in this model system possibly underlies the need for functioning anti-HMGB1-releasing agents and antioxidants that possess both dual trace metal chelating and oxidant scavenging properties in a directed combinatorial therapy for RA.  相似文献   
65.
本实验使用氦氖激光采用不同的处理时间照射孔雀鱼的仔鱼,分析其LDH,IDH及过氧化物酶的活性变化,实验表明:氦氖激光照射仔鱼可引起上述酶的活性出现不同程度的提高  相似文献   
66.
This study was designed to investigate the alterations in thiobarbituric acid reactants (TBA-reactants) and enzymatic and nonenzymatic antioxidant levels induced by dexamethasone (Dex) in heart and kidney and to find out whether these alterations induced by Dex and its hypertensive effect had any role in the maintenance of hypertension in this model. Administration of dexamethasone induced severe loss of body weight, significant increase in heart and kidney weights and also marked electrocardiographic changes. The protein content in heart and kidney increased significantly during Dex administration and returned to near normalcy after withdrawal. Total activity of lactate dehydrogenase showed a significant increase in heart till day 8 of treatment, whereas in serum, it exhibited a significant decrease. The activity of CK in heart showed an increase till day 8 of treatment and approached normalcy thereafter. In serum, CK exhibited a decrease till day 8, remaining insignificant thereafter. CKMB in heart showed an insignificant increase initially, reaching normal levels on Dex withdrawal, whereas in serum, it showed a significant decrease throughout the experimental period. Mean arterial pressure (MAP) and heart rate increased significantly, while a significant elevation in the ST segment was noticed during administration as well as after withdrawal of dex. The TBA-reactants levels were found to increase in heart and kidney during days 12 and 16 of administration with Dex and even after withdrawal of Dex, the levels were insignificantly elevated. The level of glutathione in heart and kidney increased from day 4 onwards and reached normalcy during the later stages of treatment and after withdrawal of Dex. The total sulfhydryl groups exhibited a significant increase in both heart and kidney throughout the experiment. The antioxidant enzymes such as catalase, superoxide dismutase, glutathione peroxidase and glutathione S-transferase exhibited a significant decrease in heart during Dex administration whereas, in kidney, they exhibited a significant increase during treatment and after withdrawal of Dex. Thus, Dex induced rise in mean arterial pressure, significant alterations in electrocardiographic parameters and also marked alterations in enzymatic and nonenzymatic antioxidant levels and in the TBA-reactants level in heart and kidney.  相似文献   
67.
Microglia are highly dynamic cells in the brain. Their functional diversity and phenotypic versatility brought microglial energy metabolism into the focus of research. Although it is known that microenvironmental cues shape microglial phenotype, their bioenergetic response to local nutrient availability remains unclear.In the present study effects of energy substrates on the oxidative and glycolytic metabolism of primary – and BV-2 microglial cells were investigated. Cellular oxygen consumption, glycolytic activity, the levels of intracellular ATP/ADP, autophagy, mTOR phosphorylation, apoptosis and cell viability were measured in the absence of nutrients or in the presence of physiological energy substrates: glutamine, glucose, lactate, pyruvate or ketone bodies.All of the oxidative energy metabolites increased the rate of basal and maximal respiration. However, the addition of glucose decreased microglial oxidative metabolism and glycolytic activity was enhanced. Increased ATP/ADP ratio and cell viability, activation of the mTOR and reduction of autophagic activity were observed in glutamine-supplemented media. Moreover, moderate and transient oxidation of ketone bodies was highly enhanced by glutamine, suggesting that anaplerosis of the TCA-cycle could stimulate ketone body oxidation.It is concluded that microglia show high metabolic plasticity and utilize a wide range of substrates. Among them glutamine is the most efficient metabolite. To our knowledge these data provide the first account of microglial direct metabolic response to nutrients under short-term starvation and demonstrate that microglia exhibit versatile metabolic machinery. Our finding that microglia have a distinct bioenergetic profile provides a critical foundation for specifying microglial contributions to brain energy metabolism.  相似文献   
68.
Obesity is known to be a poorer prognosis factor for breast cancer in postmenopausal women. Among the diverse endocrine factors associated to obesity, leptin has received special attention since it promotes breast cancer cell growth and invasiveness, processes which force cells to adapt their metabolism to satisfy the increased demands of energy and biosynthetic intermediates. Taking this into account, our aim was to explore the effects of leptin in the metabolism of MCF-7 breast cancer cells. Polarographic analysis revealed that leptin increased oxygen consumption rate and cellular ATP levels were more dependent on mitochondrial oxidative metabolism in leptin-treated cells compared to the more glycolytic control cells. Experiments with selective inhibitors of glycolysis (2-DG), fatty acid oxidation (etomoxir) or aminoacid deprivation showed that ATP levels were more reliant on fatty acid oxidation. In agreement, levels of key proteins involved in lipid catabolism (FAT/CD36, CPT1, PPARα) and phosphorylation of the energy sensor AMPK were increased by leptin. Regarding glucose, cellular uptake was not affected by leptin, but lactate release was deeply repressed. Analysis of pyruvate dehydrogenase (PDH), lactate dehydrogenase (LDH) and pyruvate carboxylase (PC) together with the pentose-phosphate pathway enzyme glucose-6 phoshate dehydrogenase (G6PDH) revealed that leptin favors the use of glucose for biosynthesis. These results point towards a role of leptin in metabolic reprogramming, consisting of an enhanced use of glucose for biosynthesis and lipids for energy production. This metabolic adaptations induced by leptin may provide benefits for MCF-7 growth and give support to the reverse Warburg effect described in breast cancer.  相似文献   
69.
Berberine is an isoquinoline alkaloid isolated from Coptidis rhizoma, a major herb widely used in Chinese herbal medicine. Berberine's biological activity includes antidiarrheal, antimicrobial, and anti-inflammatory effects. Recent findings show that berberine prevents neuronal damage due to ischemia or oxidative stress and that it might act as a novel cholesterol-lowering compound. The accumulation of amyloid-beta peptide (Abeta) derived from amyloid precursor protein (APP) is a triggering event leading to the pathological cascade of Alzheimer's disease (AD); therefore the inhibition of Abeta production should be a rational therapeutic strategy in the prevention and treatment of AD. Here, we report that berberine reduces Abeta levels by modulating APP processing in human neuroglioma H4 cells stably expressing Swedish-type of APP at the range of berberine concentration without cellular toxicity. Our results indicate that berberine would be a promising candidate for the treatment of AD.  相似文献   
70.
羚牛、羊、牛血清同工酶的比较研究   总被引:5,自引:1,他引:4  
本文报道了羚牛、同羊及秦川牛的血清乳酸脱氢酶(LDH)、酯酶(Es)聚丙烯酰胺凝胶的不连续电泳图谱,并对这3种动物的酶谱进行了分析比较,从酶谱的区带数目、泳动率、相对含量及染色强度来看,均表明3者各具有特征电泳图谱,且羚牛与同羊图谱的相似程度较秦川牛接近。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号