首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   135篇
  免费   7篇
  国内免费   16篇
生物科学   158篇
  2023年   1篇
  2022年   2篇
  2021年   1篇
  2020年   3篇
  2019年   4篇
  2018年   2篇
  2017年   4篇
  2016年   1篇
  2015年   7篇
  2014年   7篇
  2013年   3篇
  2012年   4篇
  2011年   4篇
  2010年   4篇
  2009年   7篇
  2008年   6篇
  2007年   9篇
  2006年   10篇
  2005年   13篇
  2004年   7篇
  2003年   4篇
  2002年   8篇
  2001年   8篇
  2000年   6篇
  1999年   5篇
  1998年   5篇
  1997年   3篇
  1996年   4篇
  1995年   6篇
  1993年   2篇
  1992年   2篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1985年   1篇
  1982年   1篇
排序方式: 共有158条查询结果,搜索用时 265 毫秒
91.
Greenhouse experiments were conducted to assess the effects of soil salinity on emergence, growth, water status, proline content and mineral accumulation of seedlings of Avicennia marina (Forssk.) Vierh. NaCl was added to the soil and salinity was maintained at 0.2, 2.5, 5.1, 7.7, 10.3, 12.6, 15.4, 17.9, 20.5, 23.0, 25.6 and 28.2 psu. A negative relationship between seedling emergence and salt concentration was obtained. Nevertheless, this mangrove is highly salt tolerant during germination. Growth of seedlings was significantly promoted by low salinity and optimum growth was obtained at 15.4 psu. Higher salinities inhibited plant growth. Growth and dry matter accumulation in tissues followed the same optimum curve. Water potential of tissues became significantly more negative with increasing salinity, and proline content significantly increased. Moreover, water potential and proline content of tissues displayed an S-curve with the inflection point below ∼10 psu. The concentration of Na in tissues increased significantly, whereas K, Ca, Mg, N and P content decreased.  相似文献   
92.
Background and Aims Rhizophora species of mangroves have a conspicuous system of stilt-like roots (rhizophores) that grow from the main stem and resemble flying buttresses. As such, the development of rhizophores can be predicted to be important for the effective transmission of dynamic loads from the top of the tree to the ground, especially where the substrate is unstable, as is often the case in the habitats where Rhizophora species typically grow. This study tests the hypothesis that rhizophore architecture in R. mangle co-varies with their proximity to the main stem, and with stem size and crown position.Methods The allometry and wood mechanical properties of R. mangle (red mangrove) trees growing in a mangrove basin forest within a coastal lagoon in Mexico were compared with those of coexisting, non-buttressed mangrove trees of Avicennia germinans. The anatomy of rhizophores was related to mechanical stress due to crown orientation (static load) and to prevailing winds (dynamic load) at the study site.Key Results Rhizophores buttressed between 10 and 33 % of tree height. There were significant and direct scaling relationships between the number, height and length of rhizophores vs. basal area, tree height and crown area. Wood mechanical resistance was significantly higher in the buttressed R. mangle (modulus of elasticity, MOE = 18·1 ± 2 GPa) than in A. germinans (MOE = 12·1 ± 0·5 GPa). Slenderness ratios (total height/stem diameter) were higher in R. mangle, but there were no interspecies differences in critical buckling height. When in proximity to the main stem, rhizophores had a lower length/height ratio, higher eccentricity and higher xylem/bark and pith proportions. However, there were no directional trends with regard to prevailing winds or tree leaning.Conclusions In comparison with A. germinans, a tree species with wide girth and flare at the base, R. mangle supports a thinner stem of higher mechanical resistance that is stabilized by rhizophores resembling flying buttresses. This provides a unique strategy to increase tree slenderness and height in the typically unstable substrate on which the trees grow, at a site that is subject to frequent storms.  相似文献   
93.
Recent work was conducted to predict the structure of functionally distinct regions of Avicennia marina peroxidase (AP) by using the structural coordinates of barley grains peroxidase as the template. This enzyme is utilized by all living organisms in many biosynthetic or degradable processes and in defense against oxidative stress. The homology model showed some distinct structural changes in the heme, calcium, and substrate-binding regions. Val53 was found to be an important coordinating residue between distal calcium ion and the distal heme site while Ser176 is coordinated to the proximal histidine through Ala174 and Leu172. Different ionic and hydrogen-bonded interactions were also observed in AP. Analyses of various substrate–enzyme interactions revealed that the substrate-binding pocket is provided by the residues, His41, Phe70, Gly71, Asp138, His139, and Lys176; the later three residues are not conserved in the peroxidase family. We have also performed structural comparison of the A. marina peroxidase with that of two class III salt-sensitive species, peanut and soybean. Four loop regions were found to have largest structural deviation. The overall protein sequence was also analyzed for the presence of probable post-translational modification sites and the functional significance of these sites were outlined.  相似文献   
94.

Background and Aims

Successive vascular cambia are involved in the secondary growth of at least 200 woody species from >30 plant families. In the mangrove Avicennia these successive cambia are organized in patches, creating stems with non-concentric xylem tissue surrounded by internal phloem tissue. Little is known about radial growth and tree stem dynamics in trees with this type of anatomy. This study aims to (1) clarify the process of secondary growth of Avicennia trees by studying its patchiness; and (2) study the radial increment of Avicennia stems, both temporary and permanent, in relation to local climatic and environmental conditions. A test is made of the hypothesis that patchy radial growth and stem dynamics enable Avicennia trees to better survive conditions of extreme physiological drought.

Methods

Stem variations were monitored by automatic point dendrometers at four different positions around and along the stem of two Avicennia marina trees in the mangrove forest of Gazi Bay (Kenya) during 1 year.

Key Results

Patchiness was found in the radial growth and shrinkage and swelling patterns of Avicennia stems. It was, however, potentially rather than systematically present, i.e. stems reacted either concentrically or patchily to environment triggers, and it was fresh water availability and not tidal inundation that affected radial increment.

Conclusions

It is concluded that the ability to develop successive cambia in a patchy way enables Avicennia trees to adapt to changes in the prevailing environmental conditions, enhancing its survival in the highly dynamic mangrove environment. Limited water could be used in a more directive way, investing all the attainable resources in only some locations of the tree stem so that at least at these locations there is enough water to, for example, overcome vessel embolisms or create new cells. As these locations change with time, the overall functioning of the tree can be maintained.  相似文献   
95.

Background

Stem diameter variations are mainly determined by the radial water transport between xylem and storage tissues. This radial transport results from the water potential difference between these tissues, which is influenced by both hydraulic and carbon related processes. Measurements have shown that when subjected to the same environmental conditions, the co-occurring mangrove species Avicennia marina and Rhizophora stylosa unexpectedly show a totally different pattern in daily stem diameter variation.

Methods

Using in situ measurements of stem diameter variation, stem water potential and sap flow, a mechanistic flow and storage model based on the cohesion–tension theory was applied to assess the differences in osmotic storage water potential between Avicennia marina and Rhizophora stylosa.

Key results

Both species, subjected to the same environmental conditions, showed a resembling daily pattern in simulated osmotic storage water potential. However, the osmotic storage water potential of R. stylosa started to decrease slightly after that of A. marina in the morning and increased again slightly later in the evening. This small shift in osmotic storage water potential likely underlaid the marked differences in daily stem diameter variation pattern between the two species.

Conclusions

The results show that in addition to environmental dynamics, endogenous changes in the osmotic storage water potential must be taken into account in order to accurately predict stem diameter variations, and hence growth.  相似文献   
96.
广西北仑河口区新造高程约220 cm 的潮间带裸滩,移植白骨壤与茳芏、沟叶结缕草、芦苇和南水葱四种盐沼草进行混种,研究盐沼草-红树混种减轻污损动物对人工红树林危害的生物防治效果。结果表明:沟叶结缕草和茳芏可快速生长和扩展,缓流、促淤能力高于长势较差的南水葱和芦苇。在盐沼和白骨壤上发现19种污损动物,其中潮间藤壶、白条地藤壶、黑口滨螺和粗糙滨螺为优势种。茳芏和沟叶结缕草受污损程度较南水葱和芦苇轻。四种盐沼草受污损程度均低于白骨壤。白骨壤+茳芏、白骨壤+沟叶结缕草混种均可有效减轻污损动物对白骨壤苗木危害,这两类树-草混种处理区苗木的高度、叶数、枝数、枝下高和存活率等指标均较其他处理区好。初步判断“盐沼草-红树林协同生态修复体系”对于营造人工红树林有较高应用价值。  相似文献   
97.
In order to understand the salt tolerance and secretion in mangrove plant species, gel electrophoresis coupled with LC‐MS‐based proteomics was used to identify key transport proteins in the plasma membrane (PM) and tonoplast fractions of Avicennia officinalis leaves. PM and tonoplast proteins were purified using two‐aqueous‐phase partitioning and density gradient centrifugation, respectively. Forty of the 254 PM proteins and 31 of the 165 tonoplast proteins identified were predicted to have transmembrane domains. About 95% of the identified proteins could be classified based on their functions. The major classes of proteins were predicted to be involved in transport, metabolic processes, defense/stress response, and signal transduction, while a few of the proteins were predicted to be involved in other functions such as membrane trafficking. The main classes of transporter proteins identified included H+‐ATPases, ATP‐binding cassette transporters, and aquaporins, all of which could play a role in salt secretion. These data will serve as the baseline membrane proteomic dataset for Avicennia species. Further, this information can contribute to future studies on understanding the mechanism of salt tolerance in halophytes in addition to salt secretion in mangroves. All MS data have been deposited in the ProteomeXchange with identifier PXD000837 ( http://proteomecentral.proteomexchange.org/dataset/PXD000837 ).  相似文献   
98.
Mangroves are prone to bearing frequently the full brunt of hurricanes and tropical storms. The extent of destruction and early regeneration are widely studied. The purpose of this study was to add a long‐term view of mangrove regeneration and assess the potential effects on mangrove horizontal zonation patterns of catastrophic destruction. Hattie, a category five hurricane, hit the Belizean coast in 1961. It passed directly over the Turneffe Atoll where our study area, Calabash Cay, is located. At four sites on this island, we analyzed mangrove forest structure along transects parallel to the shoreline within zones delineated by species dominance and tree height. We propose an index based on the Simpson index of diversity to express changes in the heterogeneity of the species dominance. Physical–chemical parameters and nutrient availability were also measured. The destruction levels were estimated by analysis of the distribution of diameter at breast heights of the bigger trees in the inland zones. Variations in species dominance among sites and zones could be explained by interactions of various factors. Further, different levels of destruction between the two sides of the island had a significant effect on current patterns of species and structural zonation at Calabash. We conclude that disturbance regime in general should be considered as a factor potentially influencing mangrove horizontal zonation patterns.  相似文献   
99.
We investigated the genetic variation of Avicennia germinans using 172 AFLP (Amplified Fragment Length Polymorphism) bands of 45 plants from four localities on the Colombian Pacific coast: 11 from Virudó (Chocó), 10 from La Plata (Valle), 12 from Tumaco (Nariño), and 12 from Chontal (Nariño). AFLP variation among localities (16.2%) was highly significant (AMOVA; P < 0.0001). All the analyses showed that Tumaco was the most genetically distinct locality of the four under study. The other three localities, La Plata, Virudó, and Chontal, apparently form a large single subpopulation with high‐to‐moderate gene flow among localities. We also found the genetic diversity of A. germinans on the Colombian Pacific coast (HE= 0.251) higher than that estimated by others over the broad geographic range of A. germinans. All these results together show that mangroves on the Colombian Pacific coast deserve a strong investigative effort to improve our ecological, evolutionary, and biogeographic knowledge of this important tropical forest type.  相似文献   
100.
Predictions of climate‐related shifts in species ranges have largely been based on correlative models. Due to limitations of these models, there is a need for more integration of experimental approaches when studying impacts of climate change on species distributions. Here, we used controlled experiments to identify physiological thresholds that control poleward range limits of three species of mangroves found in North America. We found that all three species exhibited a threshold response to extreme cold, but freeze tolerance thresholds varied among species. From these experiments, we developed a climate metric, freeze degree days (FDD), which incorporates both the intensity and the frequency of freezes. When included in distribution models, FDD accurately predicted mangrove presence/absence. Using 28 years of satellite imagery, we linked FDD to observed changes in mangrove abundance in Florida, further exemplifying the importance of extreme cold. We then used downscaled climate projections of FDD to project that these range limits will move northward by 2.2–3.2 km yr?1 over the next 50 years.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号