首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1459篇
  免费   33篇
  国内免费   113篇
生物科学   1605篇
  2024年   1篇
  2023年   3篇
  2022年   8篇
  2021年   16篇
  2020年   8篇
  2019年   12篇
  2018年   11篇
  2017年   16篇
  2016年   12篇
  2015年   18篇
  2014年   20篇
  2013年   51篇
  2012年   32篇
  2011年   38篇
  2010年   24篇
  2009年   74篇
  2008年   84篇
  2007年   90篇
  2006年   96篇
  2005年   74篇
  2004年   99篇
  2003年   55篇
  2002年   47篇
  2001年   45篇
  2000年   70篇
  1999年   58篇
  1998年   78篇
  1997年   60篇
  1996年   40篇
  1995年   42篇
  1994年   48篇
  1993年   33篇
  1992年   38篇
  1991年   40篇
  1990年   35篇
  1989年   22篇
  1988年   19篇
  1987年   40篇
  1986年   24篇
  1985年   10篇
  1984年   5篇
  1983年   2篇
  1982年   5篇
  1980年   2篇
排序方式: 共有1605条查询结果,搜索用时 31 毫秒
991.
The present study aimed to obtain analgesic-antitumor peptide (AGAP) gene expression in plants. The analgesic-antitumor peptide (AGAP) gene was from the venom of Buthus martensii Karsch. Previous studies showed that AGAP has both analgesic and antitumor activities, suggesting that AGAP would be useful in clinical situations as an antitumor drug. Given that using a plant as an expression vector has more advantages than prokaryotic expression, we tried to obtain transgenic plants containing AGAP. In the present study, the AGAP gene was cloned into the plasmid pBI121 to obtain the plant expression vector pBI-AGAP. By tri-parental mating and freeze–thaw transformation, pBI-AGAP was transformed into Agrobacterium tumefaciens LBA4404. Tobacco (Nicotiana tabacum) and tomato (Lycopersicom esculentum) were transformed by the method of Agrobacterium-mediated leaf disc transformation. The transformants were then screened to grow and root on media containing kanamycin. Finally, transformations were confirmed by analysis of PCR, RT-PCR and western blotting. The results showed that the AGAP gene was integrated into the genomic DNA of tobacco and tomato and was successfully expressed. Therefore, the present study suggests a potential industrial application of AGAP expressed in plants.  相似文献   
992.
According to current taxonomical rules, a bona fide bacterialspecies is a genomic species characterized by the genomic similarityof its members. It has been proposed that the genomic cohesionof such clusters may be related to sexual isolation, which limitsgene flow between too divergent bacteria. Homologous recombinationis one of the most studied mechanisms responsible for this geneticisolation. Previous studies on several bacterial models showedthat recombination frequencies decreased exponentially withincreasing DNA sequence divergence. In the present study, weinvestigated this relationship in the Agrobacterium tumefaciensspecies complex, which allowed us to focus on sequence divergencein the vicinity of the genetic boundaries of genomic species.We observed that the sensitivity of the recombination frequencyto DNA divergence fitted a log-linear function until approximately10% sequence divergence. The results clearly revealed that therewas no sharp drop in recombination frequencies at the pointwhere the sequence divergence distribution showed a "gap" delineatinggenomic species. The ratio of the recombination frequency inhomogamic conditions relative to this frequency in heterogamicconditions, that is, sexual isolation, was found to decreasefrom 8 between the most distant strains within a species to9 between the most closely related species, for respective increasesfrom 4.3% to 6.4% mismatches in the marker gene chvA. This meansthat there was only a 1.13-fold decrease in recombination frequenciesfor recombination events at both edges of the species border.Hence, from the findings of this investigation, we concludethat—at least in this taxon—sexual isolation basedon homologous recombination is likely not high enough to stronglyhamper gene flow between species as compared with gene flowbetween distantly related members of the same species. The 70%relative binding ratio cutoff used to define bacterial speciesis likely correlated to only minor declines in homologous recombinationfrequencies. Consequently, the sequence diversity, as a mechanisticfactor for the efficiency of recombination (as assayed in thelaboratory), appears to play little role in the genetic cohesionof bacterial species, and thus, the genomic species definitionfor prokaryotes is definitively not reconcilable with the biologicalspecies concept for eukaryotes.  相似文献   
993.
Here, we report on the construction of a novel series of Gateway‐compatible plant transformation vectors containing genes encoding autofluorescent proteins, including Cerulean, Dendra2, DRONPA, TagRFP and Venus, for the expression of protein fusions in plant cells. To assist users in the selection of vectors, we have determined the relative in planta photostability and brightness of nine autofluorescent proteins (AFPs), and have compared the use of DRONPA and Dendra2 in photoactivation and photoconversion experiments. Additionally, we have generated transgenic Nicotiana benthamiana lines that express fluorescent protein markers targeted to nuclei, endoplasmic reticulum or actin filaments. We show that conducting bimolecular fluorescence complementation assays in plants that constitutively express cyan fluorescent protein fused to histone 2B provides enhanced data quality and content over assays conducted without the benefit of a subcellular marker. In addition to testing protein interactions, we demonstrate that our transgenic lines that express red fluorescent protein markers offer exceptional support in experiments aimed at defining nuclear or endomembrane localization. Taken together, the new combination of pSITE‐BiFC and pSITEII vectors for studying intracellular protein interaction, localization and movement, in conjunction with our transgenic marker lines, constitute powerful tools for the plant biology community.  相似文献   
994.
Switchgrass (Panicum virgatum L.) is a C4 perennial grass and has been identified as a potential bioenergy crop for cellulosic ethanol because of its rapid growth rate, nutrient use efficiency and widespread distribution throughout North America. The improvement of bioenergy feedstocks is needed to make cellulosic ethanol economically feasible, and genetic engineering of switchgrass is a promising approach towards this goal. A crucial component of creating transgenic switchgrass is having the capability of transforming the explants with DNA sequences of interest using vector constructs. However, there are limited options with the monocot plant vectors currently available. With this in mind, a versatile set of Gateway-compatible destination vectors (termed pANIC) was constructed to be used in monocot plants for transgenic crop improvement. The pANIC vectors can be used for transgene overexpression or RNAi-mediated gene suppression. The pANIC vector set includes vectors that can be utilized for particle bombardment or Agrobacterium-mediated transformation. All the vectors contain (i) a Gateway cassette for overexpression or silencing of the target sequence, (ii) a plant selection cassette and (iii) a visual reporter cassette. The pANIC vector set was functionally validated in switchgrass and rice and allows for high-throughput screening of sequences of interest in other monocot species as well.  相似文献   
995.
Sorghum prolamins, termed kafirins, are categorized into subgroups α, β, and γ. The kafirins are co‐translationally translocated to the endoplasmic reticulum (ER) where they are assembled into discrete protein bodies that tend to be poorly digestible with low functionality in food and feed applications. As a means to address the issues surrounding functionality and digestibility in sorghum, we employed a biotechnology approach that is designed to alter protein body structure, with the concomitant synthesis of a co‐protein in the endosperm fraction of the grain. Wherein perturbation of protein body architecture may provide a route to impact digestibility by reducing disulphide bonds about the periphery of the body, while synthesis of a co‐protein, with known functionality attributes, theoretically could impact structure of the protein body through direct association and/or augment end‐use applications of sorghum flour by stabilizing ß‐sheet formation of the kafirins in sorghum dough preparations. This in turn may improve viscoelasticity of sorghum dough. To this end, we report here on the molecular and phenotypic characterizations of transgenic sorghum events that are down‐regulated in γ‐ and the 29‐kDa α‐kafirins and the expression of a wheat Dy10/Dx 5 hybrid high‐molecular weight glutenin protein. The results demonstrate that down‐regulation of γ‐kafirin alone does not alter protein body formation or impacts protein digestibility of cooked flour samples. However, reduction in accumulation of a predicted 29‐kDa α‐kafirin alters the morphology of protein body and enhances protein digestibility in both raw and cooked samples.  相似文献   
996.
以长春花幼叶为外植体建立了发根农杆菌介导的长春花高效遗传转化体系,主要技术环节为:用携带有基因表达载体的发根农杆菌R1000侵染幼嫩叶片,侵染的叶片外植体与发根农杆菌共培养2d,外植体移至除菌培养基除菌培养2~3周,切取外植体上诱导长出的毛状根置于筛选培养基上培养1-2周,最后对筛选出的阳性毛状根无性系进行扩繁。筛选出的阳性毛状根经GUS染色和PCR分子鉴定表明,该方法的发根诱导率和阳性转化率分别为82%±2.49%和100%。该转化方法所获得的毛状根系数量大、质量高、遗传稳定且所需时间短,明显优于现有的长春花遗传转化技术,是长春花遗传转化的高效便捷体系。  相似文献   
997.

Background and Aims

In most plant species, initiation of lateral root primordia occurs above the elongation zone. However, in cucurbits and some other species, lateral root primordia initiation and development takes place in the apical meristem of the parental root. Composite transgenic plants obtained by Agrobacterium rhizogenes-mediated transformation are known as a suitable model to study root development. The aim of the present study was to establish this transformation technique for squash.

Methods

The auxin-responsive promoter DR5 was cloned into the binary vectors pKGW-RR-MGW and pMDC162-GFP. Incorporation of 5-ethynyl-2′-deoxyuridine (EdU) was used to evaluate the presence of DNA-synthesizing cells in the hypocotyl of squash seedlings to find out whether they were suitable for infection. Two A. rhizogenes strains, R1000 and MSU440, were used. Roots containing the respective constructs were selected based on DsRED1 or green fluorescent protein (GFP) fluorescence, and DR5::Egfp-gusA or DR5::gusA insertion, respectively, was verified by PCR. Distribution of the response to auxin was visualized by GFP fluorescence or β-glucuronidase (GUS) activity staining and confirmed by immunolocalization of GFP and GUS proteins, respectively.

Key Results

Based on the distribution of EdU-labelled cells, it was determined that 6-day-old squash seedlings were suited for inoculation by A. rhizogenes since their root pericycle and the adjacent layers contain enough proliferating cells. Agrobacterium rhizogenes R1000 proved to be the most virulent strain on squash seedlings. Squash roots containing the respective constructs did not exhibit the hairy root phenotype and were morphologically and structurally similar to wild-type roots.

Conclusions

The auxin response pattern in the root apex of squash resembled that in arabidopsis roots. Composite squash plants obtained by A. rhizogenes-mediated transformation are a good tool for the investigation of root apical meristem development and root branching.  相似文献   
998.
Aims: Natural and synthetic antimicrobial peptides (AMPs) are of increasing interest as potential resistance conferring elements in plants against pathogen infection. The efficacy of AMPs against pathogens is prescreened by in vitro assays, and promising AMP candidates are introduced as transgenes into plants. As in vitro and in planta environments differ, a prescreening procedure of the AMP efficacy in the plant environment is desired. Here, we report the efficacy of the purified synthetic peptide D4E1 against the grapevine‐infecting bacterial pathogens Agrobacterium vitis and Xylophilus ampelinus in vitro and describe for the first time an in planta prescreening procedure based on transiently expressed D4E1. Methods and Results: The antimicrobial effect of D4E1 against Ag. vitis and X. ampelinus was shown by a reduction in colony‐forming units in vitro in a traditional plate‐based assay and by a reduction in bacterial titres in planta as measured by quantitative real‐time PCR (qPCR) in grapevine leaves transiently expressing D4E1. A statistically significant reduction in titre was shown for X. ampelinus, but for Agvitis, a significant reduction in titre was only observed in a subset of plants. Conclusions: The titres of both grapevine‐infecting bacterial pathogens were reduced in an in vitro assay and for Xampelinus in an in planta assay by D4E1 application. This widens the applicability of D4E1 as a potential resistance‐enhancing element to additional pathogens and in a novel plant species. Significance and Impact of the Study: D4E1 is a promising candidate to confer enhanced resistance against the two tested grapevine bacterial pathogens, and the applied transient expression system proved to be a valuable tool for prescreening of D4E1 efficacy in an in planta environment. The described prescreening procedure can be used for other AMPs and might be adapted to other plant species and pathogens before the expensive and tedious development of stably transgenic lines is started.  相似文献   
999.
以兼具生态和能源植物功能的木本模式植物——杨树(河北杨)为材料,研究了携带促生长基因(35S-DAS5)的根癌农杆菌载体介导的河北杨遗传转化若干因素对转化效果的影响。结果显示,较适宜的转化系统为预培养2-4 d,农杆菌菌液(OD600值为0.4)侵染20 min,共培养4 d,在含30 mg/L卡那霉素(Km)的培养基上诱导不定芽,生根培养基中Km的适宜浓度为10 mg/L。  相似文献   
1000.
目的:实现棘孢木霉菌T4的遗传转化并优化其转化体系.方法:以潮霉素抗性为选择标记,利用农杆菌转化法介导转化棘孢木霉菌.结果:潮霉素基因成功整合到受体菌基因组中,转化子抗性基因可稳定遗传.结论:最优的转化体系和条件为:IM和CM培养基中AS浓度为200 μg/mL,棘孢木霉T4孢子浓度为106/mL,农杆菌浓度为200 μL( OD600约0.8),共培养时间为48 h,转化效率约为50个转化子/106个孢子.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号