首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   42351篇
  免费   2996篇
  国内免费   2028篇
工业技术   47375篇
  2024年   112篇
  2023年   467篇
  2022年   1040篇
  2021年   1306篇
  2020年   1240篇
  2019年   971篇
  2018年   964篇
  2017年   1266篇
  2016年   1281篇
  2015年   1223篇
  2014年   2100篇
  2013年   2091篇
  2012年   2536篇
  2011年   2889篇
  2010年   2274篇
  2009年   2549篇
  2008年   2167篇
  2007年   3176篇
  2006年   2825篇
  2005年   2548篇
  2004年   2106篇
  2003年   1947篇
  2002年   1614篇
  2001年   1315篇
  2000年   1150篇
  1999年   908篇
  1998年   697篇
  1997年   558篇
  1996年   490篇
  1995年   390篇
  1994年   350篇
  1993年   245篇
  1992年   143篇
  1991年   106篇
  1990年   77篇
  1989年   75篇
  1988年   56篇
  1987年   24篇
  1986年   15篇
  1985年   15篇
  1984年   5篇
  1983年   8篇
  1982年   4篇
  1981年   4篇
  1980年   5篇
  1975年   4篇
  1959年   4篇
  1956年   3篇
  1955年   4篇
  1951年   6篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
31.
Thermosetting materials are widely used as encapsulation in the electrical packaging to protect the core electronic components from external force, moisture, dust, and other factors. However, the spreading and curing behaviors of such kind of fluid on a heated surface have been rarely explored. In this study, we experimentally and numerically investigated the spreading and curing behaviors of the silicone(OE6550 A/B, which is widely used in the light-emitting diode packaging) droplet with diameter of ~2.2 mm on a heated surface with temperature ranging from 25 ℃ to 250 ℃. For the experiments, we established a setup with high-speed camera and heating unit to capture the fast spreading process of the silicone droplet on the heated surface. For the numerical simulation, we built a viscosity model of the silicone by using the Kiuna's model and combined the viscosity model with the Volume of Fluid(VOF) model by the User Defined Function(UDF) method. The results show that the surface temperature significantly affected the spreading behaviors of the silicone droplet since it determines the temperature and viscosity distribution inside the droplet. For surface temperature varied from 25 ℃ to 250 ℃, the final contact radius changed from ~2.95 mm to ~1.78 mm and the total spreading time changed from ~511 s to ~0.15 s. By further analyzing the viscosity evolution of the droplet, we found that the decreasing of the total spreading time was caused by the decrease of the viscosity under high surface temperature at initial spreading stage, while the reduction of the final contact radius was caused by the curing of the precursor film. This study supplies a strategy to tuning the spreading and curing behavior of silicone by imposing high surface temperature, which is of great importance to the electronic packaging.  相似文献   
32.
《Ceramics International》2021,47(21):30051-30060
Hydroxyapatite (HA) is a highly regarded synthetic bone graft material. Porous HA ceramics blocks are used to substitute harvested natural bone grafts. Being similar to bone mineral, HA material integrates with the host bone through surface osteointegration and slowly resorb along with the natural bone remodeling process. The blocks in use currently have random and tortuous pore structures. The present work explores the usefulness of cage-like HA ceramic design with end-to-end open pores, with the help of in vitro cell culture methods. Such a structure, on implantation, will take up the blood factors and cells and host the bone remodeling process inside the bulk of the cage, leading to early healing. In the study, HA samples with aligned through-pores were prepared and explored in vitro, with a focus on how the pores host the cells inside and to what level the cells maintain their activity. Human osteoblast-like cells (HOS) were used, at different seeding and culturing approaches. Cell seeding was done through (i) conventional large volume cell suspension, (ii) a confined mini chamber with a limited volume of cell suspension, and (iii) placing a concentrated drop of cell suspension directly on top of the scaffold. The third approach gave the best cell adhesion and proliferation, and hence used for further explorations. A dynamic culture system was designed in-house by bifurcating the cell culture wells using vertical inserts, holding the samples horizontally with their ends open to both sides, and making the media flow across using a rocker platform. The HOS cell adhesion, viability and proliferation were tested in the HA cages, in static and dynamic culture conditions, with conventional porous ceramics as the control. The cell infiltration was deeper and the cell viability over a period of 7 days was significantly higher in dynamic culture conditions in the test samples.  相似文献   
33.
A size-dependent governing equation is derived to investigate the torsional static behaviors of two-dimensionally functionally graded microtubes based on the modified couple stress theory. The shear modulus is assumed to vary along the tube’s length direction according to an exponential distribute function, and varies along the tube’s radius direction according to a power-law function. A generalized differential quadrature method is developed to determine the rotational angle and shear stresses. Some illustrative examples are given to investigate the effects of applied torques, the length scale parameter and various material compositions on the torsional angle and shear stresses.  相似文献   
34.
《Ceramics International》2020,46(7):9218-9224
High-performance environment-friendly piezoelectric potassium sodium niobate (KNN)-based thin films have been emerged as promising lead-free candidates, while their substrate-dependent piezoelectricity faces the lack of high-quality information due to restraints in measurements. Although piezoresponse force microscopy (PFM) is a potential measuring tool, still its regular mode is not considered as a reliable characterization method for quantification. After combining machine-learning enabled analysis using PFM datasets, it is possible to measure piezoelectric properties quantitatively. Here we utilized advanced PFM technology empowered by machine learning to measure and compare the piezoelectricity of KNN based thin films on different substrates. The results provide a better understanding of the relationship between structures and piezoelectric properties of the thin films.  相似文献   
35.
《Ceramics International》2020,46(7):9086-9095
In this research, hydroxyapatite (HA)-based ceramics were produced as suitable ceramic implants for orthopedic applications. To improve the physical, mechanical, electrical and biological properties of pure HA, we developed composite scaffolds of HA-barium titanate (BT) by cold isostatic pressing and sintering. Microstructure, crystal phases, and molecular structure were analyzed by using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR), respectively. Bulk density values were measured using the Archimedes method. The effect of different percentages of BT on cell proliferation, viability, and ALP activity of dental pulp stem cells (DPSCs) was assessed by ProstoBlue assay, Live/Dead staining, and p-NPP assay. The obtained results indicate that the HA-BT scaffolds possess higher compressive strength, toughness, density, and hardness compared with pure HA scaffolds. After immersing the scaffold in SBF solution, more deposited apatite appeared on the HA-BT, which results in rougher surface on this scaffold thanpure HA. Electrical properties of HA in the presence of BT are improved. Based on the results of cell culture experiments, composites containing 40, 50 and 60 %wt of BT have excellent biocompatibility, with the best results occurring for the sample with 50 %wt BT.  相似文献   
36.
栗小茜  葛正浩 《中国塑料》2020,34(1):92-101
综述了聚四氟乙烯(PTFE)无机材料填充改性中纤维填充改性,颗粒填充改性以及复合填充改性三大类的改性研究进展。介绍了不同无机填料对于PTFE复合材料的力学性能以及摩擦学性能的影响,包括摩擦因数、拉伸强度以及材料硬度等,发现铜(Cu)粉、二硫化钼(MoS2)以及玻璃纤维(GF)等无机填料成本较低且对PTFE的力学性能以及摩擦学性能改善较为明显,更能满足实际工程应用。最后,分析了国内外近年来研究中所存在的问题,并提出了解决方向。  相似文献   
37.
Motion of a stick-slip piezo actuator is generally controlled by the parameters related to its mechanical design and characteristics of the driving pulses applied to piezoceramic shear plates. The goal of the proposed optimization method is to find the driving pulse parameters leading to the fastest and the most reliable actuator operation. In the paper the method is tested on a rotary stick-slip piezo actuating system utilized in an atomic force microscope.The optimization is based on the measurement of the actuator response to driving pulses of different shapes and repetition frequencies at various load forces. To provide it, a computer controlled testing system generating the driving pulses, and detecting and recording the corresponding angular motion response of the actuator by a position sensitive photo detector (PSPD) in real time has been developed. To better understand and interpret the experimental results, supportive methods based on a simple analytical model and numerical simulations were used as well.In this way the shapes of the single driving pulses and values of the load force providing the biggest actuator steps were determined. Generally, the maximal steps were achieved for such a combination of the pulse shapes and load forces providing high velocities at the end of the sticking mode of the actuator motion and, at the same time, lower decelerations during the slipping mode.As for the multiple driving pulses, the pulse shapes and values of repetition frequency ensuring the sticking mode of the actuator motion during the pulse rise time together with the maximum average angular rotor velocity were specified. In this way the effective and stable operation conditions of the actuator were provided.In principle, the presented method can be applied for the testing and optimization of any linear or angular stick-slip actuator.  相似文献   
38.
In this work, the hydrothermally-synthesized sodium niobate nanowires were used to decompose Rhodamine B dye solution through the piezo-catalytic effect. With the sodium niobate catalyst, a high piezo-catalytic degradation ratio of ~80% was achieved under the excitation of vibration for the Rhodamine B dye solution (~5?mg/l). These active species in the catalytic process, hydroxyl radicals and superoxide radicals with the strong oxidation ability, were also observed, which confirmed the key role of piezoelectric effect for piezo-catalysis. The piezo-catalysis of sodium niobate nanowires provides a high-efficiency and reusable tool in application in depredating the dye wastewater.  相似文献   
39.
韩雪  王帅  周小红 《合成纤维》2020,49(1):36-40
采用普通涤纶、含1%云母颗粒的涤纶(1%云母/涤纶)以及含5%云母颗粒的涤纶(5%云母/涤纶)三种材质,上机纬密采用200根/10 cm、300根/10 cm、400根/10 cm,组织采用平纹、斜纹、缎纹试织试样。通过Hot Disk热常数分析仪,采用正交试验及极差、方差分析,研究了纤维材质、上机纬密、组织对凉感纤维织物导热系数的影响。结果表明:在试验设置变量范围内,纤维材质对导热系数的影响显著,上机纬密、组织对导热系数的影响高度显著,影响因素从大到小顺序为上机纬密>组织>纤维材质。  相似文献   
40.
In order to improve the process effectiveness and joint quality, ultrasonic vibrations were integrated with friction stir lap welding. Effect of ultrasonic exertion on the process and joint quality of AA 6061-T6 were investigated. Upon ultrasonic exertion, joints owned larger effective lap width, shorter hooks and improved strength. Weld fracture mode changed from a ductile–brittle mixed mode to a more ductile mode while the fracture path shifted from lap interface to beyond the stir zone. Material flow and interface defects were characterised using lap welded dissimilar aluminium alloy joints. Ultrasonic vibration improved the material flow and reduced the interfacial defects. Variations in failure load of joints were found in accordance with the variations in material flow and interfacial defects.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号