首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   64592篇
  免费   21531篇
  国内免费   805篇
工业技术   86928篇
  2024年   23篇
  2023年   177篇
  2022年   208篇
  2021年   690篇
  2020年   3105篇
  2019年   5702篇
  2018年   5164篇
  2017年   5765篇
  2016年   5749篇
  2015年   5520篇
  2014年   5636篇
  2013年   6098篇
  2012年   5246篇
  2011年   5084篇
  2010年   4181篇
  2009年   3805篇
  2008年   3648篇
  2007年   3515篇
  2006年   3301篇
  2005年   2610篇
  2004年   2318篇
  2003年   2262篇
  2002年   2070篇
  2001年   1737篇
  2000年   1542篇
  1999年   926篇
  1998年   126篇
  1997年   143篇
  1996年   100篇
  1995年   76篇
  1994年   54篇
  1993年   58篇
  1992年   47篇
  1991年   60篇
  1990年   26篇
  1989年   27篇
  1988年   20篇
  1987年   17篇
  1986年   22篇
  1985年   16篇
  1984年   10篇
  1983年   7篇
  1982年   5篇
  1981年   8篇
  1980年   7篇
  1976年   2篇
  1975年   5篇
  1968年   2篇
  1966年   1篇
  1951年   4篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
91.
The present study is focused on modeling of dynamic stall behavior of a pitching airfoil. The deep stall regime is in particular considered. A model is proposed, which has a low implementation and computational complexity but yet is able to deal with different types of dynamic stall conditions, including those characterized by multiple vortex shedding at the airfoil leading edge. The proposed model is appraised against an extensive data set of experimental (α,CL) curves for NACA0012. The results of an existing widely used model, having comparable complexity, are also shown for comparison. The proposed model is able to well reproduce not only the classic curves of deep dynamic stall but also the curves characterized by lift oscillations at high angles of attack due to the shedding of multiple vortices. Furthermore, the model appears to be robust to variations of its parameters from the optimal values and of the airfoil geometry. Finally, the model is successfully implemented in a commercial CFD software and applied to the simulation of a vertical axis wind turbine within the actuator cylinder approach. The accuracy of the prediction of the turbine power coefficient in the whole rotation cycle is very good for the optimal working condition of the turbine, for which the model parameters were calibrated. Fairly good accuracy is also obtained in significantly different working conditions without any further calibration.  相似文献   
92.
《Ceramics International》2020,46(3):2868-2876
In order to improve the stability of PZT-based sensors, the mechanical, dielectric, ferroelectric and piezoelectric properties of PZT-5H under impact load were studied experimentally by using the separated Hopkinson pressure bar (SHPB) with an electrical output measurement device. At the same time, the experimental study on the material properties of PZT-5H before and after the impact was carried out. The effect of impact cracks on the output voltage of PZT-5H was also analyzed. The results show that the dynamic piezoelectric constants of PZT-5H under low stress impact (10–50 MPa) are different from those under quasi-static state, and the empirical relationship between them and the peak stress is obtained through experiments. The dielectric properties of PZT-5H did not change under low stress impact, but micro-cracks occurred in the material and dielectric loss increased at high frequencies. Under short circuit, the residual polarization intensity of PZT-5H decreases sharply due to impact load. While the impact load causes the secondary polarization and the increase of the residual polarization intensity of PZT under open circuit. When the stress is over 45 MPa, the PZT-5H breaks. The formation of cracks causes abnormal discharge voltage and gap discharge.  相似文献   
93.
94.
This paper introduces two novel nonlinear stochastic attitude estimators developed on the Special Orthogonal Group with the tracking error of the normalized Euclidean distance meeting predefined transient and steady‐state characteristics. The tracking error is confined to initially start within a predetermined large set such that the transient performance is guaranteed to obey dynamically reducing boundaries and decrease smoothly and asymptotically to the origin in probability from almost any initial condition. The proposed estimators produce accurate attitude estimates with remarkable convergence properties using measurements obtained from low‐cost inertial measurement units. The estimators proposed in continuous form are complemented by their discrete versions for the implementation purposes. The simulation results illustrate the effectiveness and robustness of the proposed estimators against uncertain measurements and large initialization error, whether in continuous or discrete form.  相似文献   
95.
In this study, we have proposed an automated classification approach to identify meaningful patterns in wind field data. Utilizing an extensive simulated wind database, we have demonstrated that the proposed approach can identify low‐level jets, near‐uniform profiles, and other patterns in a reliable manner. We have studied the dependence of these wind profile patterns on locations (eg, offshore vs onshore), seasons, and diurnal cycles. Furthermore, we have found that the probability distributions of some of the patterns depend on the underlying planetary boundary layer schemes in a significant way. The future potential of the proposed approach in wind resource assessment and, more generally, in mesoscale model parameterization improvement is touched upon in this paper.  相似文献   
96.
A series of random polyesteramides (PEAs) with a range of molar composition from 90/10 to 50/50 were synthesized by direct melt polycondensation of ε‐caprolactone and l ‐alanine. Their structure was fully characterized by Fourier transform IR and NMR spectroscopy. The resulting copolymers are completely amorphous with the exception of PEA‐90/10 which possesses a semicrystalline structure. These PEAs present increasing glass transition temperatures at increasing l ‐alanine contents and exhibit fairly good thermal stability with 10% mass loss temperatures reaching 315 °C. © 2020 Society of Industrial Chemistry  相似文献   
97.
98.
Induction machines (IM) constitute a theoretically interesting and practically important class of nonlinear systems. They are frequently used as wind generators for their power/cost ratio. They are described by a fifth‐order nonlinear differential equation with two inputs and only three state variables available for measurement. The control task is further complicated by the fact that IM are subject to unknown (load) disturbances and the parameters can be of great uncertainty. One is then faced with the challenging problem of controlling a highly nonlinear system, with unknown time‐varying parameters, where the regulated output, besides being unmeasurable, is perturbed by an unknown additive signal. Passivity‐based control (PBC) is a well‐established structure‐preserving design methodology which has shown to be very powerful to design robust controllers for physical systems described by Euler‐Lagrange equations of motion. PBCs provide a natural procedure to "shape" the potential energy yielding controllers with a clear physical interpretation in terms of interconnection of the system with its environment and are robust vis á vis to unmodeled dissipative effects. One recent approach of PBC is the Interconnection and Damping Assignment Passivity‐Based Control (IDA‐PBC) which is a very useful technique to control nonlinear systems assigning a desired (Port‐Controlled Hamiltonian) structure to the closed‐loop. The aim of this paper is to give a survey on different PBC of IM. The originality of this work is that the author proves that the well known field oriented control of IM is a particular case of the IDA‐PBC with disturbance.  相似文献   
99.
In this study, solvent‐free nanofibrous electrolytes were fabricated through an electrospinning method. Polyethylene oxide (PEO), lithium perchlorate and ethylene carbonate were used as polymer matrix, salt and plasticizer respectively in the electrolyte structures. Keggin‐type hetero polyoxometalate (Cu‐POM@Ru‐rGO, Ni‐POM@Ru‐rGO and Co‐POM@Ru‐rGO (POM, polyoxometalate; rGO, reduced graphene oxide)) nanoparticles were synthesized and inserted into the PEO‐based nanofibrous electrolytes. TEM and SEM analyses were carried out for further evaluation of the synthesized filler structures and the electrospun nanofibre morphologies. The fractions of free ions and crystalline phases of the as‐spun electrolytes were estimated by obtaining Fourier transform infrared and XRD spectra, respectively. The results showed a significant improvement in the ionic conductivity of the nanofibrous electrolytes by increasing filler concentrations. The highest ionic conductivity of 0.28 mS cm?1 was obtained by the introduction of 0.49 wt% Co‐POM@Ru‐rGO into the electrospun electrolyte at ambient temperature. Compared with solution‐cast polymeric electrolytes, the electrospun electrolytes present superior ionic conductivity. Moreover, the cycle stability of the as‐spun electrolytes was clearly improved by the addition of fillers. Furthermore, the mechanical strength was enhanced with the insertion of 0.07 wt% fillers to the electrospun electrolytes. The results implied that the prepared nanofibres are good candidates as solvent‐free electrolytes for lithium ion batteries. © 2020 Society of Chemical Industry  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号