首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25449篇
  免费   2296篇
  国内免费   774篇
工业技术   28519篇
  2024年   70篇
  2023年   392篇
  2022年   677篇
  2021年   995篇
  2020年   912篇
  2019年   797篇
  2018年   591篇
  2017年   822篇
  2016年   737篇
  2015年   747篇
  2014年   1325篇
  2013年   1461篇
  2012年   1897篇
  2011年   1948篇
  2010年   1518篇
  2009年   1486篇
  2008年   1308篇
  2007年   1674篇
  2006年   1436篇
  2005年   1297篇
  2004年   1080篇
  2003年   1006篇
  2002年   722篇
  2001年   605篇
  2000年   559篇
  1999年   484篇
  1998年   390篇
  1997年   320篇
  1996年   236篇
  1995年   199篇
  1994年   194篇
  1993年   172篇
  1992年   125篇
  1991年   87篇
  1990年   52篇
  1989年   38篇
  1988年   34篇
  1987年   20篇
  1986年   21篇
  1985年   18篇
  1984年   7篇
  1983年   9篇
  1982年   6篇
  1980年   7篇
  1978年   2篇
  1977年   2篇
  1976年   2篇
  1975年   2篇
  1959年   6篇
  1951年   20篇
排序方式: 共有10000条查询结果,搜索用时 859 毫秒
991.
Polyelectrolyte complex (PEC) membranes prepared from poly(styrene sulfonate) (PSS) and poly(diallyldimethylammonium chloride) (PDADMAC) were modified by crossflow polymerization of aniline (ANI). The PEC membranes were used as separators in a two-compartment setup where ANI monomer and ammonium persulfate (APS) oxidant diffused through the membranes to form polyaniline (PANI). APS and ANI having different distributions throughout the membranes, the reaction led to the asymmetric polymerization of PANI on one face of each PEC membrane thus producing Janus membranes. Due to the excess PANI content, the membrane displayed distinct asymmetric electrical conductivities on each face. Interestingly, very different ANI polymerizations were obtained when nonstoichiometric PEC membranes having different molar ratio of cationic and anionic polyelectrolytes (P+:P? represents PDADMAC:PSS) were used and transport of APS was fastest through the 2:1 PEC when compared to the 1:2 PEC. In all experiments, the polymerization was most intense on the ANI side of the membranes. Also, the influence of NaCl both during PEC fabrication and during polymerization was studied and found to have some effect on the solute permeability. Results showed that a higher content of PANI was formed on PEC membranes having excess P+ and with no NaCl added during PEC fabrication. Although X-ray diffraction confirmed the presence of PANI on both sides of each membrane, scanning electron microscopy images demonstrated that both sides of each membrane had different PANI content deposited. Electrical conductivity measurements using a four-point probe setup also showed that the PEC–PANI exhibits asymmetric electrical property on different sides. © 2021 Society of Industrial Chemistry.  相似文献   
992.
Membranes with asymmetric wettability-Janus membranes-have recently received considerable attention for a variety of critical applications. Here, we report on a simple approach to introduce asymmetric wettability into hydrophilic porous domains. Our approach is based on the physicochemical-selective deposition of polytetrafluoroethylene (PTFE) on hydrophilic polymeric substrates. To achieve selective deposition of PTFE, we inhibit the polymerization reaction within the porous domain. We prefill the substrates with glycerol, containing a known amount of free radical inhibitor, and utilize initiated chemical vapor deposition (iCVD) for the polymerization of PTFE. We show that the glycerol/inhibitor mixture hinders the deposition of PTFE within the membrane pores. As a result, the surface of the substrates remains open and porous. The fabricated Janus membranes show stable wetting-resistant properties, evaluated through sessile drop contact angle measurements and direct contact membrane distillation (DCMD).  相似文献   
993.
SHELDON R. GORDON 《Biocell》2022,46(9):2059-2063
Much of our understanding of the events which underlie cell migration has been derived from studies of cells in tissue culture. One of the components that mediates this process is the dynamic actin-based microfilament system that can reorganize itself into so-called stress fibers that are considered essential components for cell motility. In contrast, relatively few studies have investigated cell movement along an extracellular matrix (ECM) which is known to influence both cellular organization and behavior. This opinion/viewpoint article briefly reviews cell migration during corneal endothelial wound repair along the tissue’s natural basement membrane, Descemet’s membrane. Because the tissue exists as a cell monolayer it affords one an opportunity to readily explore the effect of cell/matrix influences on cell motility. As such, cell movement along this substrate differs somewhat from that found in vitro and migrating endothelial cells also demonstrate an ability to move along the ECM without the benefit of having an organized actin cytoskeleton.  相似文献   
994.
This study demonstrates the successful development of hybrid mesoporous siliceous phosphotungstic acid (mPTA-Si) and sulfonated poly ether ether ketone (SPEEK) as a proton exchange membrane with a high performance in hydrogen proton exchange membrane fuel cells (PEMFC). SPEEK acts as a polymeric membrane matrix and mPTA-Si acts as the mechanical reinforcer and proton conducting enhancer. Interestingly, incorporating mPTA-Si did not affect the morphological aspect of SPEEK as dense membrane upon loading the amount of mPTA-Si up to 2.5 wt%. The water uptake reduced to 14% from 21.5% when mPTA-Si content increases from 0.5 to 2.5 wt% respectively. Meanwhile, the proton conductivity increased to 0.01 Scm?1 with 1.0 wt% mPTA-Si and maximum power density of 180.87 mWcm?2 which is 200% improvement as compared to pristine SPEEK membrane. The systematic study of hybrid SP-mPTA-Si membrane proved a substantial enhancement in the performance together with further improvement on physicochemical properties of parent SPEEK membrane desirable for the PEMFC application.  相似文献   
995.
针对20万t/a离子膜法烧碱装置中整流及其控制系统在长期运行过程中的不足,和引起系统不稳定的一些因素,提出了优化改进方法,以确保整流系统的安全、稳定运行。  相似文献   
996.
Cross-linking structure has been proven to be an effective approach to address the balance issue between ionic conductivity, dimensional stability and other properties of anion exchange membranes (AEMs). Here, a novel multi-cationic oligomer was synthesized from 1,4-diazabicyclo [2,2,2]octane and 1,6-dibromohexane, and subsequently used to prepare multi-cationic oligomer brushes-decorated graphene oxide (QBGO). The obtained QBGO was employed as the cross-linker to form cross-linked poly (arylene ether sulfone) (QPAES) AEMs by end-cap tertiary amine coupling reaction. Benefiting from the introduction of the multi-cations and flexible long-chain cross-linker structure, the cross-linked QPAES/QBGO membranes formed hydrophilic/hydrophobic phase-separation microstructures and well-defined ionic channels which are responsible for water uptake and ion transfer. As a result, the cross-linked QPAES/QBGO-2.0 membrane exhibited 1.90-fold higher ionic conductivity and better chemical stability than the control QPAES membrane. The QPAES/QBGO-2.0 membrane displayed a higher power density of 75.7 mW cm?2 than that of the control QPAES membrane (53.1 mW cm?2) in a H2/O2 fuel cell test. In a word, we propose that this novel design strategy holds broad prospects for the design of new polymer electrolyte membrane materials.  相似文献   
997.
A comprehensive computational fluid dynamic model has been developed using COMSOL Multiphysics 5.4 software to predict the behavior of a membrane reactor in dehydrogenation of methylcyclohexane for hydrogen production. A reliable reaction kinetic of dehydrogenation reaction and a permeation mechanism of hydrogen through silica membrane have been used in computational fluid dynamic modeling. For performance comparison, an equivalent traditional fixed bed reactor without hydrogen removal has been also modeled. After model validation, it has been used to evaluate the operating parameters effect on the performance of both the silica membrane reactor and the equivalent traditional reactor as well. The operating temperature ranged between 473 and 553 K, pressure between 1 and 2.5 bar, sweep factor from ?6.22 to 25 and feed flow rate from 1 to 5 × 10?6 mol/s. The membrane reactor performed better than the equivalent traditional reactor, achieving as best result complete methylcyclohexane conversion and 96% hydrogen recovery.  相似文献   
998.
In this study, we designed and developed a compact electrolyzer for the evaluation of components in proton exchange membrane (PEM) water electrolysis. First, this electrolyzer features a precise pressure-control system that controls the active electrode area and facilitates setting the desired clamping pressure. This mechanism makes it possible to optimize the electrolyzer performance. Second, it has two reference electrodes that are connected on the faces of the active electrode area of the anode and the cathode on the PEM. The polarizations at the anode and the cathode, the membrane resistivity, and the porous transport layer (PTL) overpotential were measured. The details of the design are described, and the electrochemical performance was measured. The optimized clamping pressure for this electrolyzer component was obtained as the specific value. A new measurement method was developed for estimating polarizations at the anode and the cathode, membrane resistance, and PTL overpotential using two reference electrodes.  相似文献   
999.
Biodiesel is a biodegradable and renewable fuel, emerging as a viable alternative to petroleum diesel. Conventional biodiesel processes still suffer from problems associated with the use of homogeneous catalysts and the limitations imposed by the chemical reaction equilibrium, thus leading to severe economic and environmental penalties. This work provides a detailed review—illustrated with relevant examples—of novel reactive separation technologies used in biodiesel production: reactive distillation/absorption/extraction, and membrane reactors. Reactive separation offers new and exciting opportunities for manufacturing the fatty acid alkyl esters involved in the industrial production of biodiesel and specialty chemicals. The integration of reaction and separation into one operating unit overcomes equilibrium limitations and provides major benefits such as low capital investment and operating costs. These reactive separation processes can be further enhanced by heat‐integration and powered by heterogeneous catalysts, to eliminate all conventional catalyst related operations, using efficiently the raw materials and the reaction volume, while offering higher conversion and selectivity, as well as significant energy savings compared with conventional biodiesel processes. Remarkable, in spite of the high degree of integration, such integrated reactive‐separation processes are still very well controllable as illustrated by the included examples. Copyright © 2012 Society of Chemical Industry  相似文献   
1000.
《分离科学与技术》2012,47(2):234-246
Due to an emerging scarcity of oil resources and an associated increase of oil prices, biofuels (e.g., ethanol) play an important role in the energy crisis. Fermentation is a common process for producing ethanol from renewable biomass. Pervaporation is an attractive technique for the recovery of ethanol from the fermentation systems. Separation membrane is the key element in the pervaporation separation equipments. In this article, the pervaporation performances of ethanol-permselective membranes presented in the recovery of ethanol from dilute ethanol aqueous solution are reviewed. An analytical overview on the challenges and opportunities, and the prospect of ethanol-permselective membranes by pervaporation is also discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号