首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   203篇
  免费   19篇
  国内免费   14篇
工业技术   236篇
  2024年   3篇
  2023年   15篇
  2022年   9篇
  2021年   27篇
  2020年   5篇
  2019年   12篇
  2018年   5篇
  2017年   13篇
  2016年   12篇
  2015年   11篇
  2014年   11篇
  2013年   13篇
  2012年   21篇
  2011年   12篇
  2010年   7篇
  2009年   9篇
  2008年   10篇
  2007年   11篇
  2006年   8篇
  2005年   7篇
  2004年   7篇
  2003年   2篇
  1999年   1篇
  1998年   1篇
  1995年   1篇
  1992年   1篇
  1990年   1篇
  1987年   1篇
排序方式: 共有236条查询结果,搜索用时 15 毫秒
231.
Layer-by-layer assembly is a versatile technique for fabricating nanofiltration membranes, where multiple layers of polyelectrolytes are usually required to achieve reasonable separation performance. In this work, an ionic strength directed self-assembly procedure is described for the preparation of nanofiltration membranes consisting of only a single bilayer of poly(diallyldimethylammoniumchloride) and poly(sodium-4-styrenesulfoate). The influence of background ionic strength as well as membrane substrate properties on the formation of single-bilayer membranes are systematically evaluated. Such a simplified polyelectrolyte deposition procedure results in membranes having outstanding separation performance with permeating flux of 14.2 ± 1.5 L∙m–2∙h–1∙bar–1 and Na2SO4 rejection of 97.1% ± 0.8% under a low applied pressure of 1 bar. These results surpass the ones for conventional multilayered polyelectrolyte membranes. This work encompasses an investigation of ionic strength induced coiling of the polyelectrolyte chains and emphasizes the interplay between-polyelectrolyte chain configuration and substrate pore profile. It thus introduces a new concept on the control of membrane fabrication process toward high performance nanofiltration.  相似文献   
232.
Layer-by-layer (LbL) coating is becoming a widely used method to fabricate nonfullerene active layer films for organic solar cells. However, the vertical compositional distribution of the LbL-coated active layer, particularly at the buried bottom surface, is not clear yet. In common sense, it is believed that the LbL-coating yields a donor–mixture–acceptor (D–m–A) vertical distribution in the active layer, i.e., a thin polymer donor layer at the bottom surface, a thin acceptor layer at the top surface and a donor-acceptor mixture in the middle. In this study, it is shown that the LbL active layer vertically is an entire donor:acceptor mixture. A pure layer of polymer donor doesn't exist at the bottom surface. The LbL active layer delivers high performance in both conventional and inverted device structures. A thin polymer layer with different thicknesses (2, 6, 12 nm) is inserted at the bottom surface to study their effects on the device performance. Those inserted layers substantially deteriorate the device's performance. Furthermore, the assumption is further confirmed by X-ray photoelectron spectroscopy measurement on the exposed “originally buried” surface. This study sheds light on understanding the vertical compositional distribution of active layer via layer-by-layer solution processing.  相似文献   
233.
Understanding the role and immobilization of molecular catalysts on photoelectrodes is essential to use their full potential for efficient solar fuel generation. Here, a CoII4O4 cubane with proven catalytic performance and an active H2O─Co2(OR)2─OH2 edge-site moiety is immobilized on BiVO4 photoanodes through a versatile layer-by-layer assembly strategy. This delivers a photocurrent of 3.3 mA cm−2 at 1.23 VRHE and prolonged stability. Tuning the thickness of the Co4O4 layer has remarkable effects on photocurrents, dynamic open circuit potentials, and charge carrier behavior. Comprehensive-time and frequency-dependent perturbation techniques are employed to investigate carrier kinetics in transient and pseudo-steady-state operando conditions. It is revealed that the Co4O4 layer can prolong carrier lifetime, unblock kinetic limitations at the interface by suppressing recombination, and enhance charge transfer. Additionally, its flexible roles are identified as passivation/hole trapping/catalytic layer at respective lower/moderate/higher potentials. These competing functions are under dynamic equilibrium, which fundamentally defines the observed photocurrent trends.  相似文献   
234.
综述了不同自愈体系的自愈机制,根据是否需要外加修复剂,将自愈体系分为本征型和外援型两类,其中本征型自愈体系的愈合机制是指非共价键 (氢键作用、疏水作用、静电作用) 和共价键 (DA键、双硫键) 的重新结合作用;外援型自愈体系是引入修复剂,利用修复剂修复损伤。最后,对自愈体系的主要的应用技术:层层自组装技术、微胶囊封装技术和化学转化膜技术进行了综述。  相似文献   
235.
The design of molecularly selective membranes is of paramount importance in the electrochemical separation of organic acids from complex fermentation streams, due to the presence of multicomponent species. However, current membrane-integrated electrochemical technologies have relied on ion-exchange membranes that lack intrinsic ion-selectivity, thus preventing their application for value-added recovery of organic acids from competing ions. Here, this study demonstrates a layer-by-layer polyelectrolyte functionalization approach for controlling ion-selectivity, to achieve the multicomponent separation of organic acids in a redox-flow electrodialysis platform. This study carries out a detailed investigation of the surface morphology and physicochemical properties of functionalized membranes, underlying that the selectivity of organic acids can be precisely tuned through the control of the hydrophilicity, electrostatic repulsion, and steric hindrance. Tailoring of membrane physiochemical properties enables up to complete retention of succinate, while enhancing the total flux. This organic acid retention is extended to the control over mono- and multivalent organic acids. Integration of functionalized membrane with the redox-flow system allows selective succinic acid recovery with 99.7% purity from a synthetic fermentation mixture, high energy efficiency, and membrane stability. Modulation of ion-selectivity through membrane functionalization coupled with  electrochemical architecture design enables a sustainable pathway for multicomponent separations in biomanufacturing.  相似文献   
236.
Atomically precise metal nanoclusters (NCs) represent an emerging sector of light-harvesting antennas by virtue of peculiar atomic stacking fashion, quantum confinement effect, and molecular-like discrete energy band structure. Nevertheless, precise control of charge carriers over metal NCs has yet to be achieved by the short carrier lifetime and intrinsic instability of metal NCs, which renders the complexity of metal NCs-based photosystems with photoredox mechanisms remaining elusive. Herein, fine tuning of charge migration over metal NCs is demonstrated by constructing directional charge transfer channels in multilayered heterostructure enabled by a facile layer-by-layer (LbL) assembly approach, wherein oppositely charged branched poly-ethylenimine (BPEI) and glutathione (GSH)-capped gold NCs [Aux NCs, Au25(GSH)18 NCs] are alternately deposited on the metal oxide (MOs: TiO2, WO3, Fe2O3) substrates. TheAux (Au25) NCs layer serves as light-harvesting antennas for engendering charge carriers, andBPEI interim layer uniformly intercalated at the interface of Aux NCs layer constitutes the tandem hole transport channel for motivating the charge transfer cascade, resulting in the considerably enhanced photoelectrochemical water oxidation performances. Besides, poor photo-stability of Aux NCs is surmounted by stimulating the hole transfer kinetics process.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号