首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20350篇
  免费   2283篇
  国内免费   1425篇
工业技术   24058篇
  2024年   46篇
  2023年   302篇
  2022年   404篇
  2021年   526篇
  2020年   605篇
  2019年   523篇
  2018年   488篇
  2017年   645篇
  2016年   673篇
  2015年   761篇
  2014年   1131篇
  2013年   1023篇
  2012年   1457篇
  2011年   1399篇
  2010年   1078篇
  2009年   1065篇
  2008年   1040篇
  2007年   1390篇
  2006年   1316篇
  2005年   1179篇
  2004年   1007篇
  2003年   932篇
  2002年   739篇
  2001年   767篇
  2000年   650篇
  1999年   468篇
  1998年   393篇
  1997年   351篇
  1996年   316篇
  1995年   300篇
  1994年   252篇
  1993年   162篇
  1992年   132篇
  1991年   117篇
  1990年   92篇
  1989年   92篇
  1988年   76篇
  1987年   47篇
  1986年   21篇
  1985年   23篇
  1984年   17篇
  1983年   10篇
  1982年   7篇
  1981年   5篇
  1980年   5篇
  1979年   9篇
  1976年   3篇
  1974年   3篇
  1961年   2篇
  1959年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Er3+-doped CaF2 transparent ceramics are promising mid-infrared gain materials because of their utra-low phonon energy as well as excellent physical, chemical, and optical properties. However, existing hot-pressed and hot-formed CaF2 ceramics are very difficult to be used in practical applications due to residual pores and weak polycrystallization, respectively. Here, we developed the high quality Er3+-doped CaF2 transparent polycrystalline ceramic by single crystal ceramization. The sample exhibits obvious polycrystalline structure, good mechanical properties, perfectly transmittance, and excellent mid-infrared performance, which provides significant and wide-ranging opportunities for advanced mid-infrared gain materials.  相似文献   
992.
以硫酸肼(HS)、对苯二甲酸(TPA)、4,4'-联苯醚二甲酸(DPE)为单体,发烟硫酸做溶剂和脱水剂一步合成了一系列不同TPA和DPE单体配比的磺化聚芳噁二唑(SPOD),再通过氢氧化锂中和得到聚芳噁二唑磺酸锂(Li-SPOD)聚合物电解质,采用浇铸成膜法制得Li-SPOD电解质膜,研究改变TPA和DPE两种单体配比对Li-SPOD结构及性能的影响。结果表明,几种不同单体配比均能实现在聚合过程中一步得到SPOD,磺酸基团接枝在DPE结构的苯环上,并且可以达到理论接枝量;同时Li-SPOD电解质膜的聚集态结构差异很小;热性能的表现均非常优异,初始热分解温度都在450 ℃以上;力学性能随DPE单体含量的增加稍有下降但依然保持在较高的水平;电导率约为10-5S/cm级别,随DPE含量增加而逐渐降低;Li-SPOD固态电解质电化学稳定性较好,对锂稳定电化学窗口均在4.0 V以上。  相似文献   
993.
Cellular fusion is a key process in many fields ranging from historical gene mapping studies and monoclonal antibody production, through to cell reprogramming. Traditional methodologies for cell fusion rely on the random pairing of different cell types and generally result in low and variable fusion efficiencies. These approaches become particularly limiting where substantial numbers of bespoke one‐to‐one fusions are required, for example, for in‐depth studies of nuclear reprogramming mechanisms. In recent years, microfluidic technologies have proven valuable in creating platforms where the manipulation of single cells is highly efficient, rapid and controllable. These technologies also allow the integration of different experimental steps and characterisation processes into a single platform. Although the application of microfluidic methodologies to cell fusion studies is promising, current technologies that rely on static trapping are limited both in terms of the overall number of fused cells produced and their experimental accessibility. Here we review some of the most exciting breakthroughs in core microfluidic technologies that will allow the creation of integrated platforms for controlled cell fusion at high throughput. © 2015 Society of Chemical Industry  相似文献   
994.
Studies on muscle mimicking actuators have increased in the last two decades due to the possibility of various applications for compact lightweight actuators including small unmanned aircrafts, missile, and biomimetic robots. Piezoelectric materials have been used in a variety of applications ranging from shape control of structure and active vibration control of structure to noise suppression due to compact size and good frequency response. Conventional polycrystal piezoelectric ceramic materials, however, have limited actuating strains and displacement, hindering their use in actuators for small aerospace vehicles. In this study, the design and fabrication method of an actuator with a piezoelectric single-crystal layer were investigated to increase the actuation strain and displacement. From a comparison of the performance of the LIPCA-C2 and LIPCA-S prototypes, it was found that the new LIPCA-S2, which has much higher coefficient of the unimorph actuator, can generate an actuating displacement more than twice that of LIPCA-C2.  相似文献   
995.
996.
997.
998.
Residual stresses due to manufacturing processes, such as welding, change the load bearing capacity of cracked components. The effects of residual stresses on crack behaviour in single edge bending specimens were investigated using Finite element analyses. Three parameters (J, Q and R) were used to study the crack behaviour. The J‐integral predicts the size scale over which large stresses and strains exist, the constraint parameter Q describes the crack‐tip constraint as a result of geometry, loading mode and crack depth and the constraint parameter R is used to describe the constraint resulting from residual stresses. To carry out a systematic investigation on the effect of residual stresses on the J‐integral and crack‐tip constraints, models under different combinations of residual stresses and external loads with different crack depths were analysed. It has been shown that the crack‐tip constraint R increased by tensile residual stresses around the crack‐tip. On the other hand, the constraint parameter R decreased and tended to zero at high external load levels.  相似文献   
999.
Single view reconstruction (SVR) is an important approach for 3D shape recovery since many non‐existing buildings and scenes are captured in a single image. Historical photographs are often the most precise source for virtual reconstruction of a damaged cultural heritage. In semi‐automated techniques, that are mainly used under practical situations, the user is the one who recognizes and selects constraints to be used. Hence, the veridicality and the accuracy of the final model partially rely on man‐based decisions. We noticed that users, especially non‐expert users such as cultural heritage professionals, usually do not fully understand the SVR process, which is why they have trouble in decision making while modelling. That often fundamentally affects the quality of the final 3D models. Considering the importance of human performance in SVR approaches, in this paper we offer a solution that can be used to reduce the amount of user errors. Specifically, we address the problem of locating the centre of projection (CP). We introduce a tool set for 3D visualization of the CP's geometrical loci that provides the user with a clear idea of how the CP's location is determined. Thanks to this type of visualization, the user becomes aware of the following: (1) the constraint relevant for CP location, (2) the image suitable for SVR, (3) more constraints for CP location required, (4) which constraints should be used for the best match, (5) will additional constraints create a useful redundancy. In order to test our approach and the assumptions it relies on, we compared the amount of user made errors in the standard approaches with the one in which additional visualization is provided.  相似文献   
1000.
As the key parts of an aero-engine,single crystal(SX)superalloy turbine blades have been the focus of much attention.However,casting defects often occur during the manufacturing process of the SX turbine blades.Modeling and simulation technology can help to optimize the manufacturing process of SX blades.Multiscale coupled models were proposed and used to simulate the physical phenomena occurring during the directional solidification(DS)process.Coupled with heat transfer(macroscale)and grain growth(meso-scale),3D dendritic grain growth was calculated to show the competitive grain growth at micro-scale.SX grain selection behavior was studied by the simulation and experiments.The results show that the geometrical structure and technical parameters had strong influences on the grain selection effectiveness.Based on the coupled models,heat transfer,grain growth and microstructure evolution of a complex hollow SX blade were simulated.Both the simulated and experimental results show that the stray grain occurred at the platform of the SX blade when a constant withdrawal rate was used in manufacturing process.In order to avoid the formation of the stray crystal,the multi-scale coupled models and the withdrawal rate optimized technique were applied to the same SX turbine blade.The modeling results indicated that the optimized variable withdrawal rate can achieve SX blade castings with no stray grains,which was also proved by the experiments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号