首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37642篇
  免费   1516篇
  国内免费   1093篇
工业技术   40251篇
  2024年   37篇
  2023年   287篇
  2022年   400篇
  2021年   623篇
  2020年   489篇
  2019年   488篇
  2018年   468篇
  2017年   696篇
  2016年   957篇
  2015年   1205篇
  2014年   1921篇
  2013年   1816篇
  2012年   2102篇
  2011年   3674篇
  2010年   2999篇
  2009年   3200篇
  2008年   2781篇
  2007年   2874篇
  2006年   2487篇
  2005年   2115篇
  2004年   1804篇
  2003年   1792篇
  2002年   1507篇
  2001年   773篇
  2000年   616篇
  1999年   489篇
  1998年   349篇
  1997年   307篇
  1996年   205篇
  1995年   134篇
  1994年   128篇
  1993年   109篇
  1992年   94篇
  1991年   60篇
  1990年   55篇
  1989年   46篇
  1988年   26篇
  1987年   19篇
  1986年   22篇
  1985年   24篇
  1984年   17篇
  1983年   10篇
  1982年   7篇
  1981年   5篇
  1980年   9篇
  1979年   6篇
  1977年   5篇
  1959年   2篇
  1957年   1篇
  1951年   3篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.
Assembling 2D-material (2DM) nanosheets into micro- and macro-architectures with augmented functionalities requires effective strategies to overcome nanosheet restacking. Conventional assembly approaches involve external binders and/or functionalization, which inevitably sacrifice 2DM's nanoscale properties. Noble metal ions (NMI) are promising ionic crosslinkers, which can simultaneously assemble 2DM nanosheets and induce synergistic properties. Herein, a collection of NMI–2DM complexes are screened and categorized into two sub-groups. Based on the zeta potentials, two assembly approaches are developed to obtain 1) NMI-crosslinked 2DM hydrogels/aerogels for heterostructured catalysts and 2) NMI–2DM inks for templated synthesis. First, tetraammineplatinum(II) nitrate (TPtN) serves as an efficient ionic crosslinker to agglomerate various 2DM dispersions. By utilizing micro-textured assembly platforms, various TPtN–2DM hydrogels are fabricated in a scalable fashion. Afterward, these hydrogels are lyophilized and thermally reduced to synthesize Pt-decorated 2DM aerogels (Pt@2DM). The Pt@2DM heterostructures demonstrate high, substrate-dependent catalytic activities and promote different reaction pathways in the hydrogenation of 3-nitrostyrene. Second, PtCl4 can be incorporated into 2DM dispersions at high NMI molarities to prepare a series of PtCl4–2DM inks with high colloidal stability. By adopting the PtCl4–graphene oxide ink, various Pt micro-structures with replicated topographies are synthesized with accurate control of grain sizes and porosities.  相似文献   
992.
Photocatalytic conversion of CO2 into fuels using pure water as the proton source is of immense potential in simultaneously addressing the climate-change crisis and realizing a carbon-neutral economy. Single-atom photocatalysts with tunable local atomic configurations and unique electronic properties have exhibited outstanding catalytic performance in the past decade. However, given their single-site features they are usually only amenable to activations involving single molecules. For CO2 photoreduction entailing complex activation and dissociation process, designing multiple active sites on a photocatalyst for both CO2 reduction and H2O dissociation simultaneously is still a daunting challenge. Herein, it is precisely construct Cu single-atom centers and two-coordinated N vacancies as dual active sites on CN (Cu1/N2CV-CN). Experimental and theoretical results show that Cu single-atom centers promote CO2 chemisorption and activation via accumulating photogenerated electrons, and the N2CV sites enhance the dissociation of H2O, thereby facilitating the conversion from COO* to COOH*. Benefiting from the dual-functional sites, the Cu1/N2CV-CN exhibits a high selectivity (98.50%) and decent CO production rate of 11.12 µmol g−1 h−1. An ingenious atomic-level design provides a platform for precisely integrating the modified catalyst with the deterministic identification of the electronic property during CO2 photoreduction process.  相似文献   
993.
One of the elementary operations in computing systems is multiplication. Therefore, high-speed and low-power multipliers design is mandatory for efficient computing systems. In designing low-energy dissipation circuits, reversible logic is more efficient than irreversible logic circuits but at the cost of higher complexity. This paper introduces an efficient signed/unsigned 4 × 4 reversible Vedic multiplier with minimum quantum cost. The Vedic multiplier is considered fast as it generates all partial product and their sum in one step. This paper proposes two reversible Vedic multipliers with optimized quantum cost and garbage output. First, the unsigned Vedic multiplier is designed based on the Urdhava Tiryakbhyam (UT) Sutra. This multiplier consists of bitwise multiplication and adder compressors. Compared with Vedic multipliers in the literature, the proposed design has a quantum cost of 111 with a reduction of 94% compared to the previous design. It has a garbage output of 30 with optimization of the best-compared design. Second, the proposed unsigned multiplier is expanded to allow the multiplication of signed numbers as well as unsigned numbers. Two signed Vedic multipliers are presented with the aim of obtaining more optimization in performance parameters. DesignI has separate binary two’s complement (B2C) and MUX circuits, while DesignII combines binary two’s complement and MUX circuits in one circuit. DesignI shows the lowest quantum cost, 231, regarding state-of-the-art. DesignII has a quantum cost of 199, reducing to 86.14% of DesignI. The functionality of the proposed multiplier is simulated and verified using XILINX ISE 14.2.  相似文献   
994.
卫星多体制测控地面测试系统设计   总被引:1,自引:0,他引:1       下载免费PDF全文
随着航天技术的不断发展,卫星功能日趋复杂,对卫星测控分系统的功能提出更高的需求,要求同时支持对地非相干扩频测控、中继测控、扩跳频测控及测量数传测控体制,对卫星测控系统地面测试平台多体制支持、通用化及自动化测试能力、可靠性提出了更高要求;本文研究了卫星多体制测控地面测试平台系统设计方法,采用了多通道测控地检通道复用、基于数据库的通用化配置及自动化测试技术,应用于某遥感卫星的地面测试,测试结果表明:该平台运行稳定,取得了良好的使用效果,满足了卫星多体制测控地面测试需求;  相似文献   
995.
In this work are studied the electronic and structural properties of armchair boron nitride/carbon nanotubes using first principles calculations. The density functional within the generalized gradient approximation (HSEh1PBE-GGA) is used. For each composition, different bonding schemes for the construction of the hybrid systems were employed. Among them, structural stability with neutral charge was determined for the following compositions: T1: B40N35C75H20, T2: B35N40C75H20, T3: B37N38C75H20, T4 : B37N37C76H20, and T7: B35N35C80H20. All these hybrid nanotubes have high polarity; the T3, T4 and T7 are semiconductors: whereas T1 and T2 are conductor in character. The formers also have magnetic behavior. These properties together with a low-chemical potential suggest applications as nano-vehicle for drug delivery. These mixed nanotubes also have potential applications in the electronic devices based on the small work function.  相似文献   
996.
Due to the high theoretical capacity as high as 1494 mAh g?1, SnO2 is considered as a potential anode material for high‐capacity lithium–ion batteries (LIBs). Therefore, the simple but effective method focused on fabrication of SnO2 is imperative. To meet this, a facile and efficient strategy to fabricate core–shell structured C/SnO2 hollow spheres by a solvothermal method is reported. Herein, the solid and hollow structure as well as the carbon content can be controlled. Very importantly, high‐yield C/SnO2 spheres can be produced by this method, which suggest potential business applications in LIBs field. Owing to the dual buffer effect of the carbon layer and hollow structures, the core–shell structured C/SnO2 hollow spheres deliver a high reversible discharge capacity of 1007 mAh g?1 at a current density of 100 mA g?1 after 300 cycles and a superior discharge capacity of 915 mAh g?1 at 500 mA g?1 after 500 cycles. Even at a high current density of 1 and 2 A g?1, the core–shell structured C/SnO2 hollow spheres electrode still exhibits excellent discharge capacity in the long life cycles. Consideration of the superior performance and high yield, the core–shell structured C/SnO2 hollow spheres are of great interest for the next‐generation LIBs.  相似文献   
997.
This paper focuses on studying the fatigue crack growth (FCG) characteristics and fracture behaviours of 30 wt% B4C/6061Al composites fabricated by using powder metallurgy and hot extrusion method. Compact tension (CT) specimens having incisions parallel to the extrusion direction (T‐D) and perpendicular to the extrusion direction (E‐D) were investigated through FCG tests. Results show that, at low/medium stress‐intensity factor range levels (ΔK ≤ 9), crack propagation rate in E‐D specimens is lower than that in T‐D specimens because the elongated B4C particles parallel to the extrusion direction in E‐D specimens can deflect the crack. The scanning electron microscope micrographs of the fractured surface illustrate that crack mainly propagates in the matrix alloy at the initial stage of its propagation and propagates more remarkably near the particle‐matrix interface with the increase of ΔK value. B4C particles are also found to be easy to fracture during the rapid crack propagation. Based on fracture analyses, considering the impacts of factors like crack deviation, plastic zone size at the crack tip, and crack driving force, a 2‐D crack propagation model was developed to study the fatigue crack propagation mechanism in the 30 wt% B4C/6061Al composite.  相似文献   
998.
The express delivery industry is often overloaded in some hot online selling seasons, which causes consumers’ dissatisfaction. Under such a circumstance, the e-retailer can utilise two opposite strategies, i.e. to set-up either a low price with a pre-announced markdown pricing (PMDP) strategy, or a high price with a pre-announced markup pricing (PMUP) strategy for the hot selling period. As both the prices and the express service quality are different between the regular period and the hot selling period, consumers can strategically choose their purchase time, which will in turn influences the e-retailer’s pricing strategy. To investigate under what condition one pricing strategy will dominate the other, we propose a two period pricing model in which the selling season are divided into regular and hot selling period, and all consumers are assumed to be strategic. The e-retailer determines the prices over the two kinds of periods to maximise its profit. The comparison shows that a PMUP (resp. PMDP) strategy is preferred when the overloading degree in the hot selling period is slight (resp. heavy). Furthermore, we extend our model by incorporating the competition of traditional retailers.  相似文献   
999.
Fuzzy theory based intelligent techniques are widely preferred for medical applications because of high accuracy. Among the fuzzy based techniques, Fuzzy C‐Means (FCM) algorithm is popular than the other approaches due to the availability of expert knowledge. But, one of the hidden facts is that the computational complexity of the FCM algorithm is significantly high. Since medical applications need to be time effective, suitable modifications must be made in this algorithm for practical feasibility. In this study, necessary changes are included in the FCM approach to make the approach time effective without compromising the segmentation efficiency. An additional data reduction approach is performed in the conventional FCM to minimize the computational complexity and the convergence rate. A comparative analysis with the conventional FCM algorithm and the proposed Fast and Accurate FCM (FAFCM) is also given to show the superior nature of the proposed approach. These techniques are analyzed in terms of segmentation efficiency and convergence rate. Experimental results show promising results for the proposed approach. © 2016 Wiley Periodicals, Inc. Int J Imaging Syst Technol, 26, 188–195, 2016  相似文献   
1000.
TC轴承激光增材制造工艺及组织性能研究   总被引:1,自引:0,他引:1  
为解决常规方法制备TC轴承带来的磨损不均问题,提高TC轴承服役寿命,采用激光增材制造方法在钢制零件基体表面制备耐磨涂层。选用两套不同工艺参数分别在TC轴承内轴套外圆、外轴套内孔进行Cr3C2/Fe基耐磨材料的激光熔覆,获得了无气孔、裂纹且冶金质量优良的耐磨涂层。采用扫描电镜(SEM)、能谱仪(EDS)、X射线衍射(XRD)检测分析手段进行形貌观察、成分分析、物相表征,并使用数字显微硬度计、摩擦磨损试验机、盐雾腐蚀实验箱分别对熔覆层进行硬度、耐磨性和耐腐蚀性进行测试。结果表明:TC轴承耐磨涂层的平均显微硬度为HV700,耐磨性为Ni60涂层的3倍,耐腐蚀性接近于316L不锈钢。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号