首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1890篇
  免费   333篇
  国内免费   337篇
地球科学   2560篇
  2024年   4篇
  2023年   18篇
  2022年   36篇
  2021年   57篇
  2020年   57篇
  2019年   62篇
  2018年   67篇
  2017年   90篇
  2016年   90篇
  2015年   103篇
  2014年   110篇
  2013年   180篇
  2012年   102篇
  2011年   119篇
  2010年   87篇
  2009年   109篇
  2008年   142篇
  2007年   134篇
  2006年   131篇
  2005年   106篇
  2004年   81篇
  2003年   74篇
  2002年   65篇
  2001年   67篇
  2000年   48篇
  1999年   61篇
  1998年   58篇
  1997年   51篇
  1996年   44篇
  1995年   30篇
  1994年   39篇
  1993年   17篇
  1992年   22篇
  1991年   24篇
  1990年   12篇
  1989年   18篇
  1988年   14篇
  1987年   3篇
  1986年   2篇
  1985年   8篇
  1984年   3篇
  1983年   3篇
  1982年   1篇
  1981年   7篇
  1980年   1篇
  1979年   1篇
  1973年   2篇
排序方式: 共有2560条查询结果,搜索用时 93 毫秒
71.
Abstract Spatial and temporal variations in radiative fluxes influence glacier mass‐balance in mountain areas. The primary goal of this study was to assess differences in solar radiation on three glacial cirques located in the Maladeta Mountain massif (Central Spanish Pyrenees), and analyse their implications on glacier development and morphology. A quantitative approach is adopted to obtain the values of solar radiation (direct, diffuse and global radiation), combining several field data parameters (measured at 55 control‐points) with the solar radiation modelling package Ecosim. The data obtained confirm that the morphologies of the glacial bodies developed in the three cirques have a good correlation with the spatial variation on solar radiation inputs, favouring also the conservation (Aneto and Coronas cirques) or total vanishing (Llosás cirque) of the glacial remnants analysed here. The study shows how strongly in this Alpine‐Mediterranean context solar radiation — firstly as a function of latitude and time of year, and locally as a function of topographic slope, aspect and shadowing — controls the mass‐balance and the spatial distribution of melting in small glaciers, having an effect on the development of their morphologies.  相似文献   
72.
P. Colantoni  D. Mencucci  O. Nesci   《Geomorphology》2004,62(3-4):257-268
Cliff recession on the high rocky coast between Gabicce and Pesaro Adriatic sea causes a wide range of mass movement processes on the whole slope, affecting both the bedrock and the overburden. The outcropping late Miocene rock formations are represented by marls, marly limestones, dark laminated mudstones and bedded sandstones and marls. Mass movements are common because of stratification and discontinuities in the rocks that, together with the presence of groundwater and weathering processes, reduce the overall strength of the slopes. A model for the evolution of this coastal area is proposed, which involves cyclic basal erosion, followed by mass movement that favours debris accumulation at the base of the cliff. The longshore currents have to then remove the material before a new cycle can begin.  相似文献   
73.
Modern urban transportation systems continuously challenge, and are challenged by, the changing nature of 21st‐century travel demand. Today, congestion is the norm in cities of the United States, and researchers and practitioners are seeking solutions to these problems. Urban commuting is identified as contributing to the suboptimal performance of transportation systems. This paper offers a review and critique of recent research on urban commuting, emphasizing geographical dimensions of this topic. Three broad areas of research related to urban commuting are discussed. These include (1) urban sustainability, (2) land use, and (3) geographic information systems (GIS). Major themes are examined in an effort to elicit thought on future geographic research. At the conclusion of the paper, summary remarks are provided and avenues for research are outlined.  相似文献   
74.
This paper proposes a basic equation of thermal radiation interaction between surface objects on the basis of the principle of heat balance in the interface. The solution of this equation takes account of the contribution of sensible heat flux and latent heat flux more completely, compared with traditional solution for surface cooling and heating processes. By the aid of the experimental data conducted in the Xiaotangshan experimental site, Beijing, both the non-applicability of Kirchoff's law and the measurability of surface emissivity in a non-isothermal system have been highlighted. Two methods called ventilation and time-delay compensations have been proposed to reduce the error induced by change of surface temperatures of non-isothermal objects during the measurement of emissivity. Based on the solution of the basic equation, this paper has analyzed and pointed out the misunderstanding in comprehension and application of Kirchoff's law published in literature.  相似文献   
75.
Mechanisms of fractional crystallization with simultaneous crustalassimilation (AFC) are examined for the Kutsugata and Tanetomilavas, an alkali basalt–dacite suite erupted sequentiallyfrom Rishiri Volcano, northern Japan. The major element variationswithin the suite can be explained by boundary layer fractionation;that is, mixing of a magma in the main part of the magma bodywith a fractionated interstitial melt transported from the mushyboundary layer at the floor. Systematic variations in SiO2 correlatewith variations in the Pb, Sr and Nd isotopic compositions ofthe lavas. The geochemical variations of the lavas are explainedby a constant and relatively low ratio of assimilated mass tocrystallized mass (‘r value’). In the magma chamberin which the Kutsugata and Tanetomi magmas evolved, a strongthermal gradient was present and it is suggested that the marginalpart of the reservoir was completely solidified. The assimilantwas transported by crack flow from the partially fused floorcrust to the partially crystallized floor mush zone throughfractures in the solidified margin, formed mainly by thermalstresses resulting from cooling of the solidified margin andheating of the crust. The crustal melt was then mixed with thefractionated interstitial melt in the mushy zone, and the mixedmelt was further transported by compositional convection tothe main magma, causing its geochemical evolution to be characteristicof AFC. The volume flux of the assimilant from the crust tothe magma chamber is suggested to have decreased progressivelywith time (proportional to t–1/2), and was about 3 x 10–2m/year at t = 10 years and 1 x 10–2 m/year at t = 100years. It has been commonly considered that the heat balancebetween magmas and the surrounding crust controls the couplingof assimilation and fractional crystallization processes (i.e.absolute value of r). However, it is inferred from this studythat the ratio of assimilated mass to crystallized mass canbe controlled by the transport process of the assimilant fromthe crust to magma chambers. KEY WORDS: assimilation and fractional crystallization; mass balance model; magma chamber; melt transport; Pb isotope  相似文献   
76.
Oil sands mining in Alberta transforms the boreal landscape of forests and wetlands into open pits, tailings ponds and overburden piles. Whereas reclamation efforts have primarily focused on upland forests, rebuilding wetland systems has recently become a motivation for research. Wetland creation and sustainability in this region is complicated by the sub‐humid climate and salinity of underlying mining material. In 2012, Syncrude Canada Ltd. completed the construction of the Sandhill Fen Watershed (SFW), a 52‐ha upland‐wetland system to evaluate wetland reclamation strategies on soft tailings. SFW includes an active pumping system, upland hummocks, a fen wetland and underdrains. To evaluate the influence of management practices on the hydrology of the system, this study reports the water balance from January 2013 to December 2014, the first 2 years after commissioning. A semi‐distributed approach was taken to examine the fluxes and stores of water in uplands and lowlands. Natural and artificial inputs and outputs were measured using a series of precipitation gauges and pumps, and evapotranspiration was quantified using three eddy covariance towers. A series of near surface wells recorded water table position. Both 2013 and 2014 were normal rainfall years, with 2013 having more and 2014 less snow than normal. In 2013, inflow/outflow from pumping was the predominant hydrological fluxes, resulting in considerable variability in water table position and storage changes throughout the summer. In 2014, the artificial addition of water was negligible, yet the water table remained near the surface in lowland locations, suggesting that wetland conditions could be maintained under current conditions. Evapotranspiration rates between uplands and lowlands were similar between years and sites, ranging from 2.2 ± 1.8 to 2.5 ± 1.2 mm/day and were largely controlled by climate. These rates were less than nearby older upland systems, suggesting that water balance partitioning will change as vegetation develops. Comparison between years and with natural systems provides insight on how management practices influence hydrologic dynamics and the overall water balance of the SFW. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
77.
Mass and energy transfer between soil, vegetation and atmosphere is the process that allows to maintain an adequate energy and water balance in the earth–atmosphere system. However, the evaluation of the energy balance components, such as the net radiation and the sensible and latent heat fluxes, is characterized by significant uncertainties related to both the dynamic nature of heat transfer processes and surfaces heterogeneity. Therefore, a detailed land use classification and an accurate evaluation of vegetation spatial distribution are required for an accurate estimation of these variables. For this purpose, in the present article, a pixel‐oriented supervised classification was applied to obtain land use maps of the Basilicata region in Southern Italy by processing three Landsat TM and ETM+ satellite images. An accuracy analysis based on the overall accuracy index and the agreement Khat of Cohen coefficient showed a good performance of the applied classification methodology and a good quality of the obtained maps. Subsequently, these maps were used in the application of a simplified two‐source energy balance model for estimating the actual evapotranspiration at a regional scale. The comparison between the simulations made by applying the simplified two‐source energy balance model and the measurements of evapotranspiration at a lysimetric station located in the study area showed the applicability and the validity of the proposed methodology. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
78.
Developing an appropriate data collection scheme to infer stream–subsurface interactions is not trivial due to the spatial and temporal variability of exchange flowpaths. Within the context of a case study, this paper presents the results from a number of common data collection techniques ranging from point to reach scales used in combination to better understand the spatial complexity of subsurface exchanges, infer the hydrologic conditions where individual influences of hyporheic and groundwater exchange components on stream water can be characterized, and determine where gaps in information arise. We start with a tracer‐based, longitudinal channel water balance to quantify hydrologic gains and losses at a sub‐reach scale nested within two consecutive reaches. Next, we look at groundwater and stream water surface levels, shallow streambed vertical head gradients, streambed and aquifer hydraulic conductivities, water chemistry, and vertical flux rates estimated from streambed temperatures to provide more spatially explicit information. As a result, a clearer spatial understanding of gains and losses was provided, but some limitations in interpreting results were identified even when combining information collected over various scales. Due to spatial variability of exchanges and areas of mixing, each technique frequently captured a combination of groundwater and hyporheic exchange components. Ultimately, this study provides information regarding technique selection, emphasizes that care must be taken when interpreting results, and identifies the need to apply or develop more advanced methods for understanding subsurface exchanges. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
79.
Street and garden trees in urban areas are often exposed to advection of strong vapour pressure deficit (VPD) air that can raise the whole‐tree transpiration rate (ET), known as the oasis effect. However, urban trees tend to have small soil volume compared with natural conditions, and so they are believed to strongly regulate stomata. ET characteristics of such urban trees have not been well understood because of a lack of reliable measurement methods. Therefore, we propose a novel weighing lysimeter method and investigate the whole‐tree water balance of an isolated container‐grown Zelkova serrata to examine (a) which biotic and abiotic factors determine ET and (b) which spatial and temporal information is needed to predict ET under urban conditions. Whole‐tree water balance and environmental conditions were measured from 2010 to 2012. Although leaf area substantially increased in the study period, daily ET did not vary much. ET increased with VPD almost linearly in 2010 but showed saturation in 2011 and 2012. Root water uptake lagged ET by 40 min in 2012. These results suggest that the small planter box interfered with root growth and that hydraulic supply capacities did not increase sufficiently to support leaf area increase. From analysis of water balance, we believe that neglecting soil drought effects on street trees without irrigation in Japan will overestimate ET over 4–5 sunny days at the longest. This is unlike previous studies of forest.  相似文献   
80.
Stemflow (Sf) measurements in tropical rain and montane forests dominated by large trees rarely include the understory and small trees. In this study, contributions of lower (1‐ to 2‐m height) and upper (>2‐m height and <5‐cm diameter at breast height [DBH]) woody understory, small trees (5 < DBH < 10 cm), and canopy trees (>10‐cm DBH) to Sf per unit ground area (Sfa) of a Mexican lower montane cloud forest were quantified for 32 days with rainfall (P) during the 2014 wet season. Rainfall, stemflow yield (Sfy), vegetation height, density, and basal area were measured. Subsequently, stemflow funneling ratios (SFRs) were calculated, and three common methods to scale up Sfy from individual trees to the stand level (tree‐Sfy correlation, P‐Sfy correlation, and mean‐Sfy extrapolation) were used to calculate Sfa. Understory woody plants, small trees, and upper canopy trees represented 96%, 2%, and 2%, respectively, of the total density. Upper canopy trees had the lowest SFRs (1.6 ± 0.5 Standard Error (SE) on average), although the lower understory had the highest (36.1 ± 6.4). Small trees and upper understory presented similar SFRs (22.9 ± 5.4 and 20.2 ± 3.9, respectively). Different Sf scaling methods generally yielded similar results. Overall Sfa during the study period was 22.7 mm (4.5% of rainfall), to which the understory contributed 70.1% (15.9 mm), small trees 10.6% (2.4 mm), and upper canopy trees 19.3% (4.4 mm). Our results strongly suggest that for humid tropical forests with dense understory of woody plants and small trees, Sf of these groups should be measured to avoid an underestimation of overall Sf at the stand level.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号