首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2683篇
  免费   256篇
  国内免费   97篇
医药卫生   3036篇
  2024年   2篇
  2023年   26篇
  2022年   88篇
  2021年   234篇
  2020年   129篇
  2019年   89篇
  2018年   77篇
  2017年   101篇
  2016年   111篇
  2015年   122篇
  2014年   220篇
  2013年   220篇
  2012年   135篇
  2011年   171篇
  2010年   134篇
  2009年   136篇
  2008年   128篇
  2007年   113篇
  2006年   112篇
  2005年   97篇
  2004年   77篇
  2003年   80篇
  2002年   62篇
  2001年   57篇
  2000年   51篇
  1999年   40篇
  1998年   35篇
  1997年   41篇
  1996年   22篇
  1995年   14篇
  1994年   17篇
  1993年   15篇
  1992年   21篇
  1991年   17篇
  1990年   11篇
  1989年   2篇
  1988年   3篇
  1987年   3篇
  1986年   6篇
  1985年   6篇
  1984年   4篇
  1983年   2篇
  1982年   2篇
  1981年   2篇
  1977年   1篇
排序方式: 共有3036条查询结果,搜索用时 15 毫秒
101.
102.
钛基种植体表面抗菌改性的研究进展   总被引:1,自引:0,他引:1  
钛金属以其优异的生物相容性、高机械强度和良好的抗腐蚀性被广泛用于临床牙列缺损及牙列缺失的修复治疗,然而细菌容易聚集和黏附其表面,且钛金属自身不具有抗菌性能,是种植体周围炎和种植义齿修复失败的主要原因之一。钛表面抗菌改性可改变种植体表面的理化性能,抑制致病菌的黏附和聚集,提高种植义齿修复的成功率。钛种植体表面改性主要是将抗菌剂或有抗菌性能的物质通过羟磷灰石涂层、二氧化钛纳米管和脱乙酰壳多糖等具有一定抗菌性能的载体对钛金属基体进行表面修饰,从而赋予钛金属不同程度的抗菌性能。本文就基体、载体和抗菌剂三方面的钛基种植体表面改性等研究进展作一综述。  相似文献   
103.
抗菌肽广泛存在于多种生物体内,是生物体非特异性免疫功能的重要组成部分。其可以保护机体免受细菌、真菌、寄生虫和病毒等病原体的侵袭,还具有介导催化、凋亡、免疫调节活性、促进伤口愈合和促成骨等作用,是钛金属内植物表面抗菌涂层研究的热点,具有良好的应用前景。本文就应用于钛金属内植物表面的抗菌肽的抗菌机制、加载方式和应用现状等进行综述。  相似文献   
104.
Nanotechnology is a very attractive tool for tailoring the surface of an orthopedic implant to optimize its interaction with the biological environment. Nanostructured interfaces are promising, especially for orthopedic applications. They can not only improve osseointegration between the implant and the living bone but also may be used as drug delivery platforms. The nanoporous structure can be used as a drug carrier to the surrounding tissue, with the intention to accelerate tissue–implant integration as well as to reduce and treat bacterial infections occurring after implantation. Titanium oxide nanotubes are promising for such applications; however, their brittle nature could be a significantly limiting factor. In this work, we modified the topography of commercially used titanium foil by the anodization process and hydrothermal treatment. As a result, we obtained a crystalline nanoporous u-shaped structure (US) of anodized titanium oxide with improved resistance to scratch compared to TiO2 nanotubes. The US titanium substrate was successfully modified with hydroxyapatite coating and investigated for bioactivity. Results showed high bioactivity in simulated body fluid (SBF) after two weeks of incubation.  相似文献   
105.
A SiO2–Al2O3 glass composite coating was prepared on Ti60 alloy via air spraying slurry and then a suitable baking process. It was composed of potassium silicate glass, alumina and quartz powders. The high temperature oxidation performance of the alloy with and without coating was evaluated in static air at both 800 °C and 900 °C. The results show that catastrophic oxidation occurs for Ti60 bare alloy. It had a mass gain of about 2 mg/cm2 after oxidation at 800 °C and 17 mg/cm2 at 900 °C for 100 h. On the contrary, the oxidation resistance of alloy coated with composite coating was much improved with the mass gain about 0.36 mg/cm2 and 0.95 mg/cm2 at 800 °C and at 900 °C, respectively. The microstructure evolution of the composite coating and the alloy was analyzed by scanning electron microscope and electron probe microanalyzer. The effect of the composite coating on the oxidation performance of the alloy is discussed especially in terms of oxygen diffusion and interfacial reaction.  相似文献   
106.
This paper presents the results of experimental research on the strength properties of porous structures with different degrees of density manufactured of Ti6Al4V titanium alloy by Laser Power Bed Fusion. In the experiment, samples with diamond structure of porosity: 34%, 50%, 73% and 81% were used, as well as samples with near-zero porosity. Monotonic tensile tests were carried out to determine the effective values of axial modulus of elasticity, ultimate tensile strength, offset yield strength, ultimate elongation and Poisson ratio for titanium alloys with different porosities. The paper also proposes relationships that can be easily used to estimate the strength and rigidity of a porous material manufactured by 3D printing. They were obtained by the approximation of two quotients. The first one refers to the relationship between the tensile strength of a material with a defined porosity to the strength of full-filled material. The second similarly determines the change in the value of the axial modulus of elasticity. The analysis of microscopic observations of fracture surfaces and also microtomography visualization of the material structure are also presented.  相似文献   
107.
The aim of this review was to investigate the relationship between biofilm and peri-implant disease, with an emphasis on the types of implant abutment surfaces. Individuals with periodontal disease typically have a large amount of pathogenic microorganisms in the periodontal pocket. If the individuals lose their teeth, these microorganisms remain viable inside the mouth and can directly influence peri-implant microbiota. Metal implants offer a suitable solution, but similarly, these remaining bacteria can adhere on abutment implant surfaces, induce peri-implantitis causing potential destruction of the alveolar bone near to the implant threads and cause the subsequent loss of the implant. Studies have demonstrated differences in biofilm formation on dental materials and these variations can be associated with both physical and chemical characteristics of the surfaces. In the case of partially edentulous patients affected by periodontal disease, the ideal type of implant abutments utilized should be one that adheres the least or negligible amounts of periodontopathogenic bacteria. Therefore, it is of clinically relevance to know how the bacteria behave on different types of surfaces in order to develop new materials and/or new types of treatment surfaces, which will reduce or inhibit adhesion of pathogenic microorganisms, and, thus, restrict the use of the abutments with indication propensity for bacterial adhesion.  相似文献   
108.
Budi Arifvianto  Jie Zhou 《Materials》2014,7(5):3588-3622
Bone tissue engineering has been increasingly studied as an alternative approach to bone defect reconstruction. In this approach, new bone cells are stimulated to grow and heal the defect with the aid of a scaffold that serves as a medium for bone cell formation and growth. Scaffolds made of metallic materials have preferably been chosen for bone tissue engineering applications where load-bearing capacities are required, considering the superior mechanical properties possessed by this type of materials to those of polymeric and ceramic materials. The space holder method has been recognized as one of the viable methods for the fabrication of metallic biomedical scaffolds. In this method, temporary powder particles, namely space holder, are devised as a pore former for scaffolds. In general, the whole scaffold fabrication process with the space holder method can be divided into four main steps: (i) mixing of metal matrix powder and space-holding particles; (ii) compaction of granular materials; (iii) removal of space-holding particles; (iv) sintering of porous scaffold preform. In this review, detailed procedures in each of these steps are presented. Technical challenges encountered during scaffold fabrication with this specific method are addressed. In conclusion, strategies are yet to be developed to address problematic issues raised, such as powder segregation, pore inhomogeneity, distortion of pore sizes and shape, uncontrolled shrinkage and contamination.  相似文献   
109.
110.
《Dental materials》2019,35(9):e220-e233
ObjectivesThis study aimed to develop silver nanoparticle (AgNP)-doped Ti6Al4V alloy surfaces and investigate their antibacterial properties against representative periopathogens and potential cytotoxicity on osteoblastic cells.MethodsAgNPs of different size distributions (5 and 30 nm) were incorporated onto the Ti6Al4V surfaces by electrochemical deposition, using colloid silver dispersions with increasing AgNP concentrations (100, 200 and 300 ppm). The time-course silver release from the specimen surfaces to cell culture media was assessed by Atomic Absorption Spectroscopy (AAS). Cell attachment, viability and proliferation were investigated by SEM, live/dead staining MTT and BrdU assays. The antibacterial effects were assessed against P. gingivalis and P. intermedia by serial dilution spotting assays.ResultsA time- and concentration-dependent silver release from the experimental surfaces was observed. Overall, cell viability and attachment on the AgNP-doped surfaces, suggested adequate cytocompatibility at all concentrations. A transient cytotoxic effect was detected at 24 h for the 5 nm-sized groups that fully recovered at later time-points, while no cytotoxicity was observed for the 30 nm-sized groups. A statistically significant, concentration-dependent decrease in cell proliferation rates was induced at 48 h in all AgNP groups, followed by recovery at 72 h in the groups coated with 5 nm-sized AgNPs. A statistically significant, concentration-dependent antibacterial effect up to 30% was confirmed against both periopathogens.SignificanceThis study sheds light to the optimal size-related concentrations of AgNP-doped Ti6Al4V surfaces to achieve antibacterial effects, without subsequent cytotoxicity. These results significantly contribute to the development of antibacterial surfaces for application in oral implantology.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号