首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1674篇
  免费   54篇
  国内免费   11篇
工业技术   1739篇
  2024年   2篇
  2023年   42篇
  2022年   81篇
  2021年   63篇
  2020年   64篇
  2019年   67篇
  2018年   48篇
  2017年   56篇
  2016年   27篇
  2015年   30篇
  2014年   77篇
  2013年   62篇
  2012年   98篇
  2011年   179篇
  2010年   160篇
  2009年   106篇
  2008年   131篇
  2007年   147篇
  2006年   93篇
  2005年   52篇
  2004年   66篇
  2003年   32篇
  2002年   20篇
  2001年   16篇
  2000年   7篇
  1999年   7篇
  1998年   4篇
  1996年   2篇
排序方式: 共有1739条查询结果,搜索用时 364 毫秒
11.
The evaporative heat transfer of the non-boiling annular two-phase flow of air-water in a small vertical tube with uniform wall heat flux was studied both theoretically and experimentally. A simplified two-phase flow boundary layer model was used to calculate the thickness of the water film attached to the wall, and from the liquid film thickness the evaporative heat transfer coefficients of the annular two-phase flow were obtained. Theoretical equations and semi-theoretical equations were proposed for predicting the evaporative heat transfer of the annular two-phase flow of air-water in a small vertical tube. The semi-theoretical prediction agrees well with the experimental data. The mechanism of the heat transfer enhancement is the evaporation of the thin liquid film attached on the wall.  相似文献   
12.
Aeree Seo 《Electrochimica acta》2006,52(4):1603-1611
Carbon-supported Pt-based ternary alloy electrocatalysts were prepared by incipient wetness method in order to elucidate the origin of the enhanced activity of oxygen reduction reaction in PEMFC. To measure the catalytic activity and stability of the cathode alloy catalysts (electrodes containing Pt loading of 0.3 mg/cm2, 20 wt.% Pt/C, E-TEK), the I-V polarization curves were obtained. All alloy catalysts showed higher performances than Pt/C. It can be concluded that as platinum formed alloys with transition metals, the electronic state of Pt and the nearest neighbor Pt-Pt distance changes, which significantly influence the electrocatalytic activity for oxygen reduction.Long-term stability test was performed with the Pt6Co1Cr1/C alloy catalyst for 500 h. According to XPS analysis, the lower oxide component with Pt6Co1Cr1/C electrocatalyst provides a large portion of platinum in metallic species in the electrocatalyst and it seems to be mainly responsible for its enhanced activity towards oxygen reduction.  相似文献   
13.
Z.D. Wei  L.L. Li  Z.T. Xia 《Electrochimica acta》2005,50(11):2279-2287
The research aims to increase the utilization of platinum (Pt) catalysts and thus to lower the catalyst loadings in the electrode for oxygen reduction reaction (ORR). The electrodeposition of Pt was performed on a rotation disk electrode (RDE) of glass carbon (GC), on which a layer of Nafion-bonded carbon of Vulcan XC 72R was dispersed in advance. The behaviors of Pt RDE and GC RDE in an aqueous solution containing HCl and H2PtCl6 were firstly studied. It was found that Pt deposition could be achieved if the electrode potential is controlled below −0.20 V versus (saturated-potassium-chloride silver chloride electrode) SSCE. However, quite a high overpotential is necessary if a quick and apparent deposition were required. Unfortunately, at a high overpotential, the hydrogen evolution would be unavoidable and even accelerated by the formation of nanometer size of Pt particles on the RDE. It was found that it is futile to increase platinum deposits just through extending the deposition time. It was also found that too large deposition current is not helpful for increase of platinum deposition because most of the current was consumed on hydrogen evolution in this case. It has been confirmed that it is conducive to richen Pt ions, present in the form of anionic complex in solution, onto the working electrode to be deposited. It is also helpful to eliminate the hydrogen bubbles formed on the working electrode, i.e., uncatalyzed carbon electrode (UCE), by imposing a positive current on the UCE for a length of time in advance of each cathodic deposition. The potential changes during deposition were recorded. Cyclic voltammograms (CV) of electrodes in 0.5 M H2SO4 before and after the deposition were used to assess loading of metal catalysts in a wide range of potential from −0.20 to 1.1 V versus SSCE. The results have shown that the performance of such an electrode with loadings estimated to be 50 μg Pt/cm2 is much better than those of a conventional electrode with loadings of 100 μg Pt/cm2.  相似文献   
14.
针对常规流场和交指型流场的质子交换膜燃料电池提出了三维非等温数学模型。模型详细考虑了电池内部的传热、传质和电化学反应,重点考察了多孔介质内的组分传递和膜内水的电渗和扩散作用,对氧气传递限制和膜内水迁移对电池性能的影响进行了分析和讨论。结果表明,流道的交指型设计加强了气体在多孔介质内的质量传递,提高了电池的输出性能,但相应地,阴极催化层界面水分的减少也使得膜的水合程度降低,这就需要更有效的水管理来防止膜脱水。  相似文献   
15.
In a polymer electrolyte membrane fuel cell (PEMFC), slow diffusion in the gas diffusion electrode may induce oxygen depletion when using air at the cathode. This work focuses on the behavior of a single PEMFC built with a Nafion® based MEA and an E-TEK gas diffusion layer and fed at the cathode with nitrogen containing 5, 10 and 20% of oxygen and working at different cell temperatures and relative humidities. The purpose is to apply the experimental impedance technique to cells wherein transport limitations at the cathode are significant. In parallel, a model is proposed to interpret the polarization curves and the impedance diagrams of a single PEMFC. The model accounts for mass transport through the gas diffusion electrode. It allows us to qualitatively analyze the experimental polarization curves and the corresponding impedance spectra and highlights the intra-electrode processes and the influence of the gas diffusion layer.  相似文献   
16.
In recent years, a lot of attentions have been paid for a development of water-free polymer electrolyte membranes fuel cells (PEMFC) at intermediate temperatures (above 100 °C) because of many technological advantages of higher temperature operation. However, the proton conductivity of conventional polymer membranes under water-free condition is usually very low and the polymeric membranes are not stable at higher temperatures. So, the development of non-hydrous proton conducting membrane under water-free condition has been a state of the art issue in the advanced PEMFC technology. In this study, non-hydrous protonic conducting material was prepared by the mixing of acidic surfactant of mono-dodecylphosphate (MDP) and organic base of benzimidazole (BnIm). The proton conductivity and thermal stability of MDP-BnIm mixed material increased with the mixing ratio of BnIm. Maximum proton conductivity of MDP-BnIm mixed material (BnIm mixing ratio of 200 wt.%. vs. MDP) was found to be 1×10−3 S cm−1 at 150 °C under water-free condition.  相似文献   
17.
Supported Pt/C catalyst with 3.2 nm platinum crystallites was prepared by the impregnation—reduction method. The various preparation conditions, such as the reaction temperature, the concentration of precursor H2PtCl6 solution and the different reducing agents, and the relationship between the preparation conditions and the catalyst performance were studied. The carbon black support after heat treatment in N2 showed improved platinum dispersion. The particle size and the degree of dispersion of Pt on the carbon black support were observed by transmission electron microscopy (TEM). The crystal phase composition of Pt in the catalyst was determined by X-ray diffraction (XRD). The surface characteristics of the carbon black support and the Pt/C catalyst were studied by X-ray photoelectron spectroscopy (XPS). The electrochemical characteristics of the Pt/C catalysts were evaluated from current—voltage curves of the membrane electrode assembly (MEA) in a proton exchange membrane fuel cell.  相似文献   
18.
为了探索PEM燃料电池堆的动态特性,对自制5kw PEM燃料电池堆进行了详尽的实验研究。实验结果表明,在所研究条件范围内,温度和压力越高电堆性能越好,而且电堆内阻不仅与工作温度有关,还显著地与操作压力有关。燃料电池堆对于大的负载突变反应能力强,负载变化时,在4s之内就能达到稳定状态,观察到动态极化曲线的不重合现象,它反映了电堆内部水的传质具有复杂机制。  相似文献   
19.
多孔碳板是一种具有高孔隙率和高导热性能的多孔材料,适合制作燃料电池增湿器,针对这一特性,提出了一种多孔碳板气-气增湿器的基本结构,以停留-扩散时间比和流道内气体流速为设计依据,提出了多孔碳板气-气增湿器的优化设计流程。通过优化设计,使增湿器在燃料电池所需气体流量的条件下工作时,停留-扩散时间比与气体流速均在一定范围之内,既保证增湿器的增湿效率较高,又保证增湿器体积不至于过大。根据该设计方法为一个25 kW燃料电池系统设计了多孔碳板气-气增湿器,能满足增湿要求。  相似文献   
20.
电催化剂是质子交换膜燃料电池中非常重要的关键材料,文中详细地介绍了大连化学物理研究所燃料电池工程中心所研制的高分散度Pt/C催化剂的制备和表征结果,采用这种Pt/C催化剂组装了5kW的电池组,电池组良好的性能验证了催化剂的高活性,为了提高催化剂的利用率,文中研究了催化剂分散度和电池性能的关系,研究表明阳极侧催化剂分散度越高对提高电池的性能越有利,而在阴极侧Pt分散度的增加对电池的性能影响不大,这是因为反应界面上Pt分散度增加后降低了氧还原反应的比活性。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号