首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   243篇
  免费   63篇
  国内免费   2篇
工业技术   308篇
  2024年   1篇
  2023年   10篇
  2022年   19篇
  2021年   16篇
  2020年   37篇
  2019年   40篇
  2018年   15篇
  2017年   27篇
  2016年   17篇
  2015年   19篇
  2014年   13篇
  2013年   17篇
  2012年   18篇
  2011年   12篇
  2010年   10篇
  2009年   9篇
  2008年   4篇
  2007年   12篇
  2006年   9篇
  2005年   2篇
  2004年   1篇
排序方式: 共有308条查询结果,搜索用时 31 毫秒
31.
A numerical investigation on natural convective heat transfer of nanofluid (Al2O3+water) inside a partially heated vertical annulus of high aspect ratio (352) has been carried out. The computational fluid dynamics solver Ansys Fluent is used for simulation and results are presented for various volume fraction of nanoparticles (0‐0.04) at different heat flux values (3‐12 kW/m2). Two well‐known correlations for evaluating thermal conductivity and viscosity have been used. Thus different combinations of the available correlations have been set to form four models (I, II, III, and IV). Therefore, a detailed analysis has been executed to identify effects of thermophysical properties on heat transfer and fluid flow of nanofluids using different models. The results show enhancement in heat transfer coefficient with volume fraction of nanoparticles. Highest enhancement achieved is found to be 14.17% based on model III, while the minimum is around 7.27% based on model II. Dispersion of nanoparticles in base fluid declines the Nusselt number and Reynolds number with different rates depending on various models. A generalized correlation is proposed for Nusselt number of nanofluids in the annulus in terms of volume fraction of nanoparticles, Rayleigh number, Reynolds number, and Prandtl number.  相似文献   
32.
In this study, optimum propylene glycol (PG) brine‐based nanofluids are being proposed as coolants for a wavy finned automotive radiator. Performance analysis is conducted and compared with conventional Ethylene Glycol (EG) brine and related nanofluids. A 25% PG brine has similar heat transfer characteristics to water at higher operating temperature ranges. The effects on radiator size, weight and cost, engine efficiency and fuel consumtion, and embodied energy saving and environmental impact are discussed as well. Compared to conventional coolant(EG water brine), for the same cooling capacity and radiator size, the coolant requirement and pumping power are reduced significantly by about 25% and 64%, respectively, whereas, for the same cooling capacity and mass flow rate, the radiator size and pumping power is reduced by 4.2% and 25.5%, respectively, with PG brine‐based Ag nanofluids.Furthermore, by using optimum PG brine‐based nanofluids, 3.5% of the embodied energy may be saved, which may yield reductions in radiator cost, engine fuel consumption and environmental costs.  相似文献   
33.
In this study, thermo‐physical properties including thermal conductivity, viscosity, density and specific heat capacity of an oil based nanofluid including silver as to be nanoparticles have been experimentally studied. The results indicate an enhancement in thermal conductivity which was depended on bulk temperature and volume fraction of utilized nanofluids. Viscosity data show a significant increment through volume fraction increasing. In addition, the specific heat capacity and density of nanofluids were studied experimentally and it was found that, all measured rheological properties of these nanofluids, were not in agreement to published correlations.  相似文献   
34.
Nanofluids are considered as interesting alternatives to conventional coolants. It is well known that traditional fluids have limited heat transfer capabilities when compared to common metals. It is therefore quite conceivable that a small amount of extremely fine metallic particles placed in suspension in traditional fluids will considerably increase their heat transfer performances. A numerical investigation into the heat transfer enhancement capabilities of coolants with suspended metallic nanoparticles inside a radial, laminar flow cooling configuration is presented. Temperature dependant nanofluid properties are evaluated from experimental data available in recent literature. Results indicate that considerable heat transfer increases are possible with the use of relatively small volume fractions of nanoparticles. Generally, however, these are accompanied by considerable increases in wall shear-stress. Results also show that predictions obtained with temperature variable nanofluid properties yield greater heat transfer capabilities and lower wall shear stresses when compared to predictions using constant properties.  相似文献   
35.
低共熔溶剂在储能与传热方面的研究进展   总被引:1,自引:0,他引:1       下载免费PDF全文
低共熔溶剂(deep eutectic solvents,DESs)通常是由一定化学计量比的氢键受体和氢键给体以氢键缔合的形式组成。因其具有低成本、无毒、饱和蒸气压低、热稳定性好、导电性好等优点,现已在有机合成、材料化学、电化学、生物质降解、催化等多个领域得到广泛应用。近年来,随着现代社会对高效能量存储和换热方面需求不断增加,低共熔溶剂在储能与传热等领域的应用受到研究人员的广泛关注。从“储与传”的角度详细综述了近年来低共熔溶剂在储能与传热方面的研究进展,从不同能量传递形式的角度出发主要分为以下两个部分:作为低共熔相变储能材料满足对潜热、相变温度及稳定性等方面的要求;作为传热工质满足对高效传热的需求。  相似文献   
36.
In order to understand the synergistic effect of surfactants and nanofluids on enhancing recovery, hydrophilic and hydrophobic alumina nanomaterials were prepared for alumina nanofluids with surfactants. Oil-water interfacial tension and emulsion stability were investigated. The experimental results showed that nanofluids cooperated with surfactants could reduce oil-water interfacial tension in the proper concentration range, Nanoparticles decreased the average size of droplets, and restrained creaming and coalescence, therefore stabilizing the emulsion. The effect of nanofluids on the viscosity of heavy oil was also tested. The results indicated that the viscosity of heavy oil with surfactants was reduced by 42.8% when nanofluids were added at the shear rate of 10 s?1.  相似文献   
37.
利用高导热率、传热性能好的传热工质(纳米流体)替代传统冷却介质应用于内燃机冷却系统中,通过纳米流体流动特性的基础研究,为其在内燃机冷却系统中的应用提供理论基础支持.因此,利用试验方法对纳米流体在波壁管内的流动进行可视化研究,以期对纳米流体的流动机理进行详细的探讨,从而推动纳米流体在内燃机冷却系统中的应用.研究发现:纳米流体的黏度增加值不大,且随着温度的升高,增加值降低;而相同入口速度状态下,纳米流体在波壁管内的流动比纯水更为活跃,漩涡数量增多,质量传递特性增强,且随纳米颗粒浓度的增加,流动湍流效应增大.通过分子动力学方法发现纳米颗粒在纳米流体流动过程中存在强烈的旋转作用,从而出现微湍流流动效应,进一步强化了纳米流体的湍流流动效果.  相似文献   
38.
设计一种使用简化CPC(非追踪式复合抛物线聚光板)集热板和新型开放式热管组合的全真空玻璃集热管中温太阳能空气集热装置。每个集热单元包括一个简化CPC集热板,一根全真空玻璃集热管,在玻璃集热管内安装一个铜管和外部的一个蒸汽包连接构成一个开放式热管结构。蒸汽包内安装螺旋换热管加热通过换热管的流动空气工质。分别使用水和CuO纳米流体作为热管工质,以空气作为集热工质,对热管式中温空气集热器的传热特性进行了实验研究。分析了不同工作压力、不同工质及纳米流体质量分数对热管集热传热特性的影响,详细比较了热管水工质和纳米流体工质在集热传热性能上的优劣。试验结果表明:本系统只使用2根玻璃集热管构成集热器,空气最大出口温度在夏天可达到200℃,在冬天可接近160℃,系统平均集热效率达到0.4以上,整个系统表现了良好的中温集热特性。以纳米流体为工质的热管热阻比以水为工质时平均降低了20%左右  相似文献   
39.
BN/EG纳米流体的制备及稳定性研究   总被引:2,自引:0,他引:2  
通过两步法制备了氮化硼/乙二醇(BN/EG)纳米流体,研究了超声振荡时间、pH值、分散剂种类及添加量3种因素对其稳定性的影响。结果表明超声分散时间太长或太短都不利于流体的稳定性,实验中取30min最好;酸或碱的加入都会使BN/EG纳米流体稳定性急剧恶化;适量分散剂PVP的加入能够明显改善BN/EG纳米流体的稳定性。  相似文献   
40.
Predictions are reported for laminar mixed convection using various types of nanofluids over a horizontal backward‐facing step in a duct, in which the upstream wall and the step are considered adiabatic surfaces, while the downstream wall from the step is heated to a uniform temperature that is higher than the inlet fluid temperature. The straight wall that forms the other side of the duct is maintained at constant temperature equivalent to the inlet fluid temperature. Eight different types of nanoparticles, Au, Ag, Al2O3, Cu, CuO, diamond, SiO2, and TiO2, with 5% volume fraction are used. The conservation equations along with the boundary conditions are solved using the finite volume method. Results presented in this paper are for a step height of 4.9 mm and an expansion ratio of 1.942, while the total length in the downstream of the step is 0.5 m. The Reynolds number is in the range of 75 ≤ Re ≤ 225. The downstream wall was fixed at a uniform wall temperature in the range of 0 ≤ ΔT ≤ 30 °C which is higher than the inlet flow temperature. Results reveal that there is a primary recirculation region for all nanofluids behind the step. It is noticed that nanofluids without secondary recirculation region have a higher Nusselt number and it increases with Prandtl number decrement. On the other hand, nanofluids with secondary recirculation regions are found to have a lower Nusselt number. Diamond nanofluid has the highest Nusselt number in the primary recirculation region, while SiO2 nanofluid has the highest Nusselt number downstream of the primary recirculation region. The skin friction coefficient increases as the temperature difference increases and the Reynolds number decreases. © 2011 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library ( wileyonlinelibrary.com/journal/htj ). DOI 10.1002/htj.20344  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号