首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   70103篇
  免费   7759篇
  国内免费   2761篇
工业技术   80623篇
  2024年   350篇
  2023年   1700篇
  2022年   2308篇
  2021年   3208篇
  2020年   2992篇
  2019年   2583篇
  2018年   2832篇
  2017年   3202篇
  2016年   3230篇
  2015年   3337篇
  2014年   4004篇
  2013年   5074篇
  2012年   4514篇
  2011年   5587篇
  2010年   3747篇
  2009年   4091篇
  2008年   3372篇
  2007年   3642篇
  2006年   3491篇
  2005年   2762篇
  2004年   2706篇
  2003年   2270篇
  2002年   1855篇
  2001年   1287篇
  2000年   1168篇
  1999年   890篇
  1998年   784篇
  1997年   674篇
  1996年   478篇
  1995年   457篇
  1994年   338篇
  1993年   242篇
  1992年   249篇
  1991年   197篇
  1990年   245篇
  1989年   236篇
  1988年   82篇
  1987年   56篇
  1986年   58篇
  1985年   68篇
  1984年   67篇
  1983年   35篇
  1982年   55篇
  1981年   9篇
  1980年   38篇
  1979年   7篇
  1978年   8篇
  1976年   6篇
  1975年   8篇
  1974年   7篇
排序方式: 共有10000条查询结果,搜索用时 423 毫秒
51.
《Ceramics International》2020,46(7):9240-9248
The effects of Sr2+ substitution for Ba2+ on phase structure, microstructure, dielectric and electric properties for Ba4-xSrxSmFe0.5Nb9.5O30 (x = 0, 1, 2, 3 and 4) ceramics were systematically researched. X-ray diffraction patterns show that Ba4-xSrxSmFe0.5Nb9.5O30 (x = 0, 1, 2 and 3) ceramics are tetragonal tungsten bronze compound with a space group of P4bm, while the sample for x = 4 is an orthorhombic structure compound. The result can be corroborated by the analysis of Raman spectroscopy. As the Sr2+ contents increase from 0 to 3, the full width at half maximum of Raman lines of all samples increase gradually, indicating that the degree of lattice distortion increase. All tetragonal tungsten bronze ceramics exhibited a broad permittivity peaks, accompanied by frequency dispersion, indicating all samples are relaxor. The electrical properties of BSSFN ceramics were further studied by complex impedance spectroscopy. XPS spectrum shows that Fe2+ and Fe3+ coexist in Ba4-xSrxSmFe0.5Nb9.5O30 ceramics, and their proportion varies with the concentration of Sr2+.  相似文献   
52.
Recently, thermal interface materials (TIMs) are in great demands for modern electronics. For mechanically mixed polymer composite TIMs, the thermal conductivity and the mechanical properties are generally lower than expected values due to the sharply increased viscosity and poor filler dispersion. This work shows that addition of a small amount of polyester-based hyperbranched polymer (HBP) avoided the trade-off in mechanically mixed ABS/hexagonal boron nitride (h-BN) composites. After adding 0.5 wt% HBP, the maximum h-BN content in the composites increased from 50 to 60 wt%. The out-of-plane, in-plane thermal conductivity, and tensile strength of ABS/h-BN with 50 wt% h-BN were 0.408, 0.517 W/mK, and 18 MPa, respectively, and were increased to 0.729, 0.847 W/mK, and 32 MPa by adding 0.5 wt% HBP, while 0.972, 1.12 W/mK, and 29.5 MPa were achieved for ABS/h-BN/HBP with 60 wt% h-BN. The morphological and rheological results proved that these enhancements are due to the improved h-BN dispersion by decreasing viscosity of composites during mixing. Theoretical modeling based on the modified effective medium theory confirmed such results and showed that the interfacial thermal resistance also decreased slightly. Thus, this work demonstrates a facile and scalable method for simultaneously improving the thermal conductivity and mechanical properties of thermoplastic-based TIMs.  相似文献   
53.
In the present study, spinel structure CoFe2O4 nanoparticles were successfully synthesized by the sol-gel auto-combustion technique. The effect of apple cider vinegar (ACV) addition as an organic biocompatible agent on the size, morphology, and magnetic properties of CoFe2O4 nanoparticles was investigated in detail. The phase evolution, particle size, and lattice parameter changes of the synthesized phase have been estimated by using Rietveld structure refinement analysis of X-ray powder diffraction data. Also, Fourier transform infrared spectra (FT-IR) of the samples verified the presence of two expected bands correspond to tetrahedral and octahedral metal-oxygen complexes within the spinel structure. Furthermore, microstructural observations revealed that ultrafine particles have a semi-spherical morphology. It was shown that the particles size decreased from ~45 to ~17 nm with an increase in the amount of ACV. Magnetic properties were carried out by vibrating sample magnetometer (VSM) at room temperature. Both the saturation magnetization (Ms) and coercivity (Hc) were found to be significantly dependent on the crystallite size and the amount of ACV.  相似文献   
54.
This paper presents the results of ongoing research carried out by the author exploring methods to provide a more robust estimate of rock mass properties specifically for use in tunnel design. Data from various large-scale rock mass failures are introduced, including coal pillars. The damage-initiation,spalling-limit approach is compared to the coal pillar database. New comparisons of estimating the geological strength index(GSI) and relationships to estimate the Hoeke Brown failure criterion parameters, mb, s and a, are presented.  相似文献   
55.
Various methods have been developed to monitor the health and strain state of carbon fiber reinforced polymers, each with a unique set of pros and cons. This research assesses the use of piezoresistive sensors for in situ strain measurement of carbon fiber and other composite structures in multidirectional laminates. The piezoresistive sensor material and the embedded circuitry are both evaluated. For the piezoresistive sensor, a conductive nickel nanocomposite sensor is compared with the piezoresistivity of the carbon fiber itself. For the circuit, the use of carbon fibers already present in the structure is compared with the use of nickel coated carbon fiber. Successful localized strain sensing is demonstrated for several sensor and circuitry configurations. Numerous engineering applications are possible in the ever-growing field of carbon-composites.  相似文献   
56.
《Ceramics International》2019,45(15):18501-18508
The modification and tuning features of nanostructured films are of great interest because of controllable and distinctive inherent properties in these materials. Here, nanocrystalline MoS2 films were fabricated on the stainless steels by a radio frequency magnetron sputtering at ambient temperature. X-ray photoelectron spectroscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction and Raman scattering spectroscopy were used to study the chemical state, chemical composition, crystal structure and vibrational properties of the fabricated MoS2 films. The bias voltage dependent structural evolution and its influence on the optical properties of MoS2 nanocrystalline films were systematically investigated. Besides, the residual stresses of MoS2 nanocrystalline films were explored by employing sin2ψ approach. X-ray diffraction demonstrates that the nanocrystalline MoS2 films have single-phase hexagonal crystal structure. All MoS2 films are polycrystalline in nature. The bandgap values are found to be intensively dependent on bias voltage. Our findings show that the nanocrystalline MoS2 films with different physical properties and intense quantum confinement effect can be realized through adjusting bias voltages. This work may provide deep insight for realizing transitional metal dichalcogenide-based nanostructured film optoelectronic devices with tunable physical properties through a traditional, very cost-effective, and large-scale fabrication method.  相似文献   
57.
来水利 《云南化工》2019,(7):180-181
有机化学是化学化工、材料、制药、食品等多个专业的基础课程,在其教学过程中,教师可以根据课程的内容及特点,分别以有机化学发展中的重大历史事件、有机化物的性质及有机反应为引导,开展学生的思想品德教育,加强课程思政建设。  相似文献   
58.
As a solid state joining process, ultrasonic spot welding has been proven to be a promising technique for joining copper alloys. However, challenges still remain in employing ultrasonic spot welding to join copper alloys. This article comprehensively reviews the current state of ultrasonic spot welding of copper alloys with a number of critical issues including materials flow, plastic deformation, temperature distribution, vibration, relative motion, vertical displacement, interface friction coefficient, online monitoring technique, coupled with the macrostructure and microstructure, the mechanical properties and electrical conductivity. In addition, the future trends in this field are provided.  相似文献   
59.
Upper Barremian – Lower Aptian inner platform “Urgonian” limestones in the Mont de Vaucluse region, SE France, consist of alternating metre-scale microporous and tight intervals. This paper focuses on the influence of structural deformation on the reservoir properties of the Urgonian limestone succession in a study area near the town of Rustrel. Petrographic, petrophysical and structural data were recovered from five fully-cored boreholes, from the walls of a 100 m long underground tunnel, and from a 50 m long transect at a nearby outcrop. The data allowed reservoir property variations in the Urgonian limestones to be studied from core to reservoir scale. Eleven Reservoir Rock Types (RRTs) were identified based on petrographic features (texture, grain size), reservoir properties (porosity, permeability), and the frequency of structural discontinuities such as fractures, faults and stylolites. Tight and microporous reservoir rock types were distinguished. Tight reservoir rock types were characterised by early cementation of intergranular pore spaces and by the presence of frequent structural discontinuities. By contrast microporous reservoir rock types contained preserved intragranular microporosity and matrix permeability, but had very few structural discontinuities. Observed vertical alternations of microporous and tight rock types are interpreted to have been controlled by the early diagenesis of the Urgonian carbonates. Deformation associated with regional-scale tectonic phases, including Albian – Cenomanian “Durancian” uplift (∼105 to 96 Ma) and Pyrenean compression (∼55 to 25 Ma), resulted in the modification of the initial petrophysical properties of the Urgonian limestones. An early diagenetic imprint conditioned both the intensity of structural deformations and the associated circulations of diagenetic and meteoric fluids. Evolution of the Reservoir Rock Types is therefore linked both to the depositional conditions and to subsequent phases of structural deformation.  相似文献   
60.
《Ceramics International》2015,41(6):7366-7373
The accumulative damage behaviour of BN-coated Hi-Nicalon™ SiC fibre-reinforced SiC matrix composite was examined under tensile cyclic loading at room and elevated temperatures. The accumulative damage occurring during the cyclic loading was quantitatively characterised using the damage parameter obtained by the hysteresis loop curves. The damage parameter increased with increasing applied stress beyond the matrix cracking stress, and it subsequently retained a nearly constant value until just before fracture. Moreover, the dielectric constant, dielectric loss and loss tangent of the composite were measured before and after the fracture in the frequency range 1–1000 MHz. The dielectric properties had similar frequency dependency before and after the fracture. However, the dielectric constant, dielectric loss and loss tangent were lower in the post-fractured specimens than in the pristine ones. The reduction of the dielectric properties was associated with the accumulative damage stored in the specimens. In addition, the relationships between the dielectric properties and the damage parameter were described in detail.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号