首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9202篇
  免费   366篇
  国内免费   149篇
工业技术   9717篇
  2024年   11篇
  2023年   50篇
  2022年   94篇
  2021年   177篇
  2020年   100篇
  2019年   107篇
  2018年   156篇
  2017年   189篇
  2016年   295篇
  2015年   494篇
  2014年   535篇
  2013年   486篇
  2012年   593篇
  2011年   870篇
  2010年   859篇
  2009年   705篇
  2008年   613篇
  2007年   642篇
  2006年   549篇
  2005年   403篇
  2004年   331篇
  2003年   289篇
  2002年   282篇
  2001年   180篇
  2000年   142篇
  1999年   98篇
  1998年   76篇
  1997年   49篇
  1996年   48篇
  1995年   40篇
  1994年   31篇
  1993年   49篇
  1992年   24篇
  1991年   26篇
  1990年   9篇
  1989年   7篇
  1988年   9篇
  1987年   11篇
  1986年   10篇
  1985年   11篇
  1984年   10篇
  1983年   5篇
  1982年   8篇
  1981年   8篇
  1980年   5篇
  1979年   4篇
  1978年   3篇
  1977年   7篇
  1974年   3篇
  1973年   5篇
排序方式: 共有9717条查询结果,搜索用时 15 毫秒
11.
Carbon nanotubes are the most promising reinforcement for high performance composites. Multiwall carbon nanotubes were directly grown onto the carbon fiber surface by catalytic thermal chemical vapor deposition technique. Multi-scale hybrid composites were fabricated using the carbon nanotubes grown fibers with epoxy matrix. Morphology of the grown carbon nanotubes was investigated using field emission scanning electron microscopy and transmission electron microscopy. The fabricated composites were subjected to impact tests which showed 48.7% and 42.2% higher energy absorption in Charpy and Izod impact tests respectively. Fractographic analysis of the impact tested specimens revealed the presence of carbon nanotubes both at the fiber surface and within the matrix which explained the reason for improved energy absorption capability of these composites. Carbon nanotubes presence at various cracks formed during loading provided a direct evidence of micro crack bridging. Thus the enhanced fracture strength of these composites is attributed to stronger fiber–matrix interfacial bonding and simultaneous matrix strengthening due to the grown carbon nanotubes.  相似文献   
12.
The site preferences of co-alloying elements (Mo–Ta, Mo–Re, Mo–Cr) in Ni3Al are studied using first-principles calculations, and the effects of these alloying elements on the elastic properties of Ni3Al are evaluated by elastic property calculations. The results show that the Mo–Ta, Mo–Re and Mo–Cr atom pairs all prefer Al–Al sites and the spatial neighbor relation of substitution sites almost has no influence on the site preference results. Furthermore, the Young's modulus of Ni3Al increases much higher by substituting Al–Al sites with co-alloying atoms, among which Mo–Re has the best strengthening effect. The enhanced chemical bondings between alloying atoms and their neighbor host atoms are considered to be the main strengthening mechanism of the alloying elements in Ni3Al.  相似文献   
13.
The electromagnetic shielding effectiveness of kenaf fiber based composites with different iron oxide impregnation levels was investigated. The kenaf fibers were retted for removing the lignin and extractives from the fibers and magnetized. Using the unsaturated polyester and the magnetized fibers, kenaf fiber based composites were manufactured by the compression molding process. The transmission energies of the composites were characterized when the composite samples were exposed under the irradiation of electromagnetic (EM) wave with a variable frequency from 9 GHz to 11 GHz. Using the Scanning Electron Microscope (SEM), the iron oxide nanoparticles were observed on the surfaces and inside the micropore structures of single fibers. As the Fe content increased from 0% to 6.8%, 15.9% and 18.0%, the total surface free energy of kenaf fibers with the magnetizing treatments increased from 44.8 mJ/m2 to 46.1 mJ/m2, 48.8 mJ/m2 and 53.0 mJ/m2, respectively, while the modulus of elasticity reduced from 2875 MPa to 2729 MPa, 2487 MPa and 2007 MPa, respectively. Meanwhile, the shielding effectiveness was increased from 30–50% to 60–70%, 65–75% and 70–80%, respectively.  相似文献   
14.
在伯克氏菌Bth264野生株产新型抗癌药物Thailandepsin A以及调节基因tdp R正向调控Thailandepsin A生物合成的基础上,利用基因工程菌Bth264/p BMTL3-tdp R发酵生产Thailandepsin A,以提高产量。以0.5%乳糖为诱导剂,确定最佳诱导条件:发酵15 h添加乳糖,诱导时间6 h;通过单因素实验,确定葡萄糖和胰蛋白胨作为碳氮源、装液量65/250 m L以及接种量1%;同时结合优化发酵培养基进行发酵,Thailandepsin A产量达到252.14 mg·L-1,比优化前的产量提高56%;另外在发酵过程中,添加大孔树脂HP-20原位吸附产物,Thailandepsin A产量可达283.75 mg·L-1,比不加树脂提高13.8%;最后,基于RT-PCR和比较Ct值法,基因工程菌和野生菌相比,Thailandepsin A生物合成基因tdp B、tdp C1的转录水平分别提高11.4倍和6.0倍,对应的产量增加4.6倍,从而在很大程度上说明调节基因tdp R的过表达促进生物合成基因转录水平的提高以及产量的增加。  相似文献   
15.
Most researches on graphene/polymer composites are focusing on improving the mechanical and electrical properties of polymers at low graphene content instead of paying attention to constructing graphene’s macroscopic structures. In current study the homo-telechelic functionalized polyethylene glycols (FPEGs) were tailored with π-orbital-rich groups (namely phenyl, pyrene and di-pyrene) via esterification reactions, which enhanced the interaction between polyethylene glycol (PEG) molecules and chemical reduced graphene oxide (RGO) sheets. The π–π stacking interactions between graphene sheets and π-orbital-rich groups endowed the composite films with enhanced tensile strength and tunable electrical conductivity. The formation of graphene network structure mediated by the FPEGs fillers via π–π stacking non-covalent interactions should account for the experimental results. The experimental investigations were also complemented with theoretical calculation using a density functional theory. Atomic force microscope (AFM), scanning electron microscope (SEM), X-ray diffraction (XRD), nuclear magnetic resonance (NMR), thermal gravimetric analysis (TGA), UV–vis and fluorescence spectroscopy were used to monitor the step-wise preparation of graphene composite films.  相似文献   
16.
The Externally Bonded Reinforcement (EBR) technique using Carbon Fiber-Reinforced Polymers (CFRP) has been commonly used to strengthen concrete structures in flexure. The use of prestressed CFRP material offers several advantages well-reported in the literature. Regardless of such as benefits, several studies on different topics are missing. The present work intends to contribute to the knowledge of two commercially available systems that differ on the type of anchorage: (i) the Mechanical Anchorage (MA), and (ii) the Gradient Anchorage (GA). For that purpose, an experimental program was carried out with twelve slabs monotonically tested under displacement control up to failure by using a four-point bending test configuration. The effect of type of anchorage system (MA and GA), prestrain level (0 and 0.4%), width (50 mm and 80 mm) and thickness (1.2 mm and 1.4 mm) of the CFRP laminate, and the surface preparation (grinded and sandblasted) on the flexural response were the main studied parameters. Better performance was observed for the slabs: (i) with prestressed laminates, (ii) for the MA system, and (iii) with sandblasted surface preparation.  相似文献   
17.
In this paper, novel morphology correlation between silver nanowires (AgNWs) and cobalt (Co)-doped ZnO (Co-ZnO) flake-like thin films (nanowire/flake-like) has been proposed for enhanced photoelectrochemical (PEC) water splitting activity. Here in, high-quality AgNWs/Co-ZnO heterostructures enabled superior visible light water splitting activity compared to the pure ZnO and AgNWs/ZnO. To address the strategic effect of AgNWs coupling and transition metal (Co-2?at%) doping into the ZnO host lattice, we have carried out the X-ray diffraction, field emission scanning microscopy, X-ray photoelectron spectroscopy, UV–Vis transmittance, water contact angle and PEC analyses. In this way, PEC water splitting activity was mainly examined by linear sweep voltammetry (I-V), amperometric I-t and photoconversion efficiency (η) studies. The experimental results provide clear evidence of morphology correlation between AgNWs and Co-ZnO flake-like structures for strong visible light absorption. Specifically, AgNWs/Co-ZnO composites exhibited significant enhancement in the photocurrent density (7.0?×?10?4 A/cm2) than AgNWs/ZnO (3.2?×?10?4 A/cm2) and pure ZnO (1.5?×?10?6 A/cm2). As a result, detailed AgNWs/Co-ZnO geometry has great potential for photoconversion efficiency (0.73%). In a word, the merits of controllable AgNWs/Co-ZnO heterostructure are proposed to improve the visible light harvesting and charge carrier generation for energy conversion devices.  相似文献   
18.
This work developed a computational methodology to evaluate and compare standard fire exposures such as those outlined in ASTM E119 with real fire exposures and determine the difference in the temperature rise of a rail car floor assembly. The real fire exposures simulated in this work were identified in a review of incidents and consisted of a constantly-fed diesel fuel spill, a localized trash fire, and a gasoline spill simulated from a collision of the railcar with an automobile. These realistic fire exposures were applied to a variety of exemplar rail cars representative of single-level and bi-level passenger cars. These floor assembly models exposed to realistic fires were simulated in Fire Dynamics Simulator (FDS). The thermal exposure at the underside of railcar provided by FDS was coupled with a thermal model in ABAQUS, which provided the evolution of temperature in different components of the floor assembly. The standard scenarios were simulated for 2 hours instead of the typical 30 minutes to identify the appropriate exposure duration in ASTM E119, which can better represent a real fire scenario. The average and maximum temperatures predicted at the unexposed surface for both scenarios were compared with the threshold values given in NFPA 130.  相似文献   
19.
The heat capacity of ytterbium orthovanadate was first measured by adiabatic calorimetry in the temperature range T?=?12.28–344.06?K. No obvious anomalies were observed on the curve obtained. The values of standard thermodynamic functions in the temperature range T?=?0–400 K were calculated. Based on low-temperature calorimetry data obtained, previously published data on the high-temperature heat capacity of ytterbium orthovanadate were corrected. The anomalous contribution to heat capacity for YbVO4 was compared with the data known for YbPO4.  相似文献   
20.
Background/purposeMeasurements of strains in critical components are often required in addition to finite element calculations when evaluating a structure.MethodsThis paper describes how standard optical fibers, bonded to the surface or embedded in a laminate, can measure strain fields along the entire length of the fiber, using the optical backscatter reflectometer.ResultsA strain field measurement can be much better compared to simulations than the more common single point measurements with strain gauges or Bragg Gratings. Changes of the strain field can be related to damage development and can be used for structural health monitoring. Practical aspects of using the fibers are also discussed.ConclusionDistributed Fiber-Optic Sensing was successfully embedded and bonded to a composite joint. Adhesive damage was identified and the strain field agreed well with FE-Analysis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号