首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35413篇
  免费   2540篇
  国内免费   2035篇
工业技术   39988篇
  2024年   78篇
  2023年   499篇
  2022年   818篇
  2021年   1182篇
  2020年   962篇
  2019年   860篇
  2018年   734篇
  2017年   1002篇
  2016年   1267篇
  2015年   1231篇
  2014年   1677篇
  2013年   1871篇
  2012年   2079篇
  2011年   2734篇
  2010年   1993篇
  2009年   2460篇
  2008年   1911篇
  2007年   2376篇
  2006年   2205篇
  2005年   1762篇
  2004年   1471篇
  2003年   1479篇
  2002年   1202篇
  2001年   931篇
  2000年   846篇
  1999年   686篇
  1998年   526篇
  1997年   372篇
  1996年   340篇
  1995年   281篇
  1994年   256篇
  1993年   226篇
  1992年   204篇
  1991年   172篇
  1990年   149篇
  1989年   116篇
  1988年   92篇
  1987年   94篇
  1986年   106篇
  1985年   103篇
  1984年   69篇
  1983年   56篇
  1982年   59篇
  1981年   54篇
  1979年   46篇
  1978年   46篇
  1977年   53篇
  1976年   58篇
  1975年   69篇
  1974年   70篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
21.
This research is concerned with the problem of 4 degrees of freedom (DOF) ship manoeuvring identification modelling with the full-scale trial data. To avoid the multi-innovation matrix inversion in the conventional multi-innovation least squares (MILS) algorithm, a new transformed multi-innovation least squares (TMILS) algorithm is first developed by virtue of the coupling identification concept. And much effort is made to guarantee the uniformly ultimate convergence. Furthermore, the auto-constructed TMILS scheme is derived for the ship manoeuvring motion identification by combination with a statistic index. Comparing with the existing results, the proposed scheme has the significant computational advantage and is able to estimate the model structure. The illustrative examples demonstrate the effectiveness of the proposed algorithm, especially including the identification application with full-scale trial data.  相似文献   
22.
For the first time, we present the unique features exhibited by power 4H–SiC UMOSFET in which N and P type columns (NPC) in the drift region are incorporated to improve the breakdown voltage, the specific on-resistance, and the total lateral cell pitch. The P-type column creates a potential barrier in the drift region of the proposed structure for increasing the breakdown voltage and the N-type column reduces the specific on-resistance. Also, the JFET effects reduce and so the total lateral cell pitch will decrease. In the NPC-UMOSFET, the electric field crowding reduces due to the created potential barrier by the NPC regions and causes more uniform electric field distribution in the structure. Using two dimensional simulations, the breakdown voltage and the specific on-resistance of the proposed structure are investigated for the columns parameters in comparison with a conventional UMOSFET (C-UMOSFET) and an accumulation layer UMOSFET (AL-UMOSFET) structures. For the NPC-UMOSFET with 10 µm drift region length the maximum breakdown voltage of 1274 V is obtained, while at the same drift region length, the maximum breakdown voltages of the C-UMOSFET and the AL-UMOSFET structures are 534 and 703 V, respectively. Moreover, the proposed structure exhibits a superior specific on-resistance (Ron,sp) of 2  cm2, which shows that the on-resistance of the optimized NPC-UMOSFET are decreased by 56% and 58% in comparison with the C-UMOSFET and the AL-UMOSFET, respectively.  相似文献   
23.
(1-x)Sr0.7Pb0.15Bi0.1TiO3-xBi4Ti3O12 ((1-x)SPBT-xBIT, x = 0-0.125) bulk ceramics were developed and calcined via the solid-state method, aimed at the application of pulsed power capacitors. The phase structures, temperature stability, hysteresis loop, and discharge properties were systematically investigated. Considering both the temperature stability and dielectric properties, 0.925SPBT-0.075BIT bulk ceramics with a capacitance variation satisfying the X7R specification were developed for pulsed power capacitors. The energy storage density was 0.252 J/cm3, and the ceramics showed high temperature stability at 80 kV/cm. The discharge current waveforms of the 0.925SPBT-0.075BIT ceramics were recorded. A high discharge power density of approximately 1.01 × 108 W/kg with an 8 Ω load resistor and short discharge period of 84 ns were achieved at 50 kV/cm. The good temperature stability properties and high power density show that the 0.925SPBT-0.075BIT ceramics are well suited for pulsed power capacitors with a wide temperature range.  相似文献   
24.
In the present work, inter-diffusion of nickel and titanium and formation of Ni-Ti intermetallic compounds on Ti-6Al-4V substrate have been studied. Initially, nickel was electrodeposited on the alloy using a modified Watts bath solution at a current density of 2 A dm?2 for 1?h. The coated specimens were then heat treated for different durations at 750, 800 and 850 °C under argon atmosphere. The effects of temperature and time on the characteristics, hardness and wear resistance of intermetallic phases were investigated. The results showed that a multilayer structure was formed after heat treatment, an outer layer of residual nickel, an area of intermetallic layers with different compositions followed by a solid solution of Ni-Ti. It was also observed that an increase in time or temperature at first led to the formation of thicker intermetallic layers; however, after passing a critical point, the intermetallic layers seem to dissolve into the substrate. Furthermore, the wear rates of the diffusion treated samples were four times lower compared to Ti-6Al-4V alloy when sliding against AISI 52100 hardened steel.  相似文献   
25.
26.
Abstract

Preparation condition can affect the structure and the properties of nanofiber membrane. In order to explore suitable conditions to prepare the Fe3O4/PVDF nanofiber membrane with good hydrophobicity, the hydrophobicity of Fe3O4/PVDF nanofiber membranes obtained by electrospinning was investigated by changing preparation conditions like weight percentage of Fe3O4 nanoparticles, blending quality concentration of poly (vinylidene fluoride) (PVDF) and Fe3O4 nanoparticles, and positive voltage. And the variations of hydrophobicity of Fe3O4/PVDF nanofiber membranes modified by 1H, 1H, 2H, 2H-perfluorodecyl trimethoxysilane were studied. The results show that the hydrophobicity of Fe3O4/PVDF nanofiber membranes has changed under different preparation conditions. The contact angles of samples increased after a modification by 1H, 1H, 2H, 2H-perfluorodecyl trimethoxysilane, which indicates that the hydrophobicity of Fe3O4/PVDF nanofiber membranes has been enhanced.  相似文献   
27.
SrLa[Ga1−x(R0.5Ti0.5)x]O4 (R = Mg, Zn) ceramics were prepared by a standard solid state sintering method. The single-phase ceramics with K2NiF4-type layered perovskite structure and I4/mmm space group were obtained, indicating that SrLa(R0.5Ti0.5) and SrLaGaO4 can form the unlimited solid solutions. With increasing x for = Mg and Zn, εr increases monotonously, the Qf value first increases and then decreases, while τf increases from a negative to a positive value. The optimized microwave dielectric properties were obtained as following: εr = 23.3, Qf = 89 400 GHz, τf = −0.8 ppm/°C for SrLa[Ga0.6(Mg0.5Ti0.5)0.4]O4 and εr = 23.3, Qf = 76 200 GHz, τf = 0.2 ppm/°C for SrLa[Ga0.7(Zn0.5Ti0.5)0.3]O4, indicating that the present solid solution ceramics are the promising candidates as microwave resonator materials for the telecommunication applications.  相似文献   
28.
Linear friction welding of the Ti6Al4V alloy is studied. A new definition of the energy input rate is proposed, based on an integration over time of the in-plane force and velocity; a strong correlation with the upset rate is then found. The effective friction coefficient is estimated to be 0·5±0·1 for varying frequencies and amplitudes, with only a weak dependence on the processing conditions displayed. A model is proposed that accounts for both the conditioning and equilibrium stages of the process, which is shown to be in good agreement with the experimental data. The model is used to study the mechanism by which the flash is formed. A criterion is proposed by which the rippled nature of its morphology can be predicted.  相似文献   
29.
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号