首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32898篇
  免费   2492篇
  国内免费   1429篇
工业技术   36819篇
  2024年   81篇
  2023年   627篇
  2022年   1068篇
  2021年   1272篇
  2020年   1288篇
  2019年   1135篇
  2018年   1000篇
  2017年   1088篇
  2016年   1111篇
  2015年   1020篇
  2014年   2110篇
  2013年   2368篇
  2012年   2393篇
  2011年   3135篇
  2010年   2384篇
  2009年   2156篇
  2008年   1939篇
  2007年   2079篇
  2006年   1563篇
  2005年   1274篇
  2004年   1109篇
  2003年   889篇
  2002年   770篇
  2001年   691篇
  2000年   536篇
  1999年   366篇
  1998年   291篇
  1997年   236篇
  1996年   184篇
  1995年   145篇
  1994年   98篇
  1993年   86篇
  1992年   84篇
  1991年   49篇
  1990年   28篇
  1989年   22篇
  1988年   20篇
  1987年   11篇
  1986年   16篇
  1985年   13篇
  1984年   20篇
  1983年   6篇
  1982年   20篇
  1981年   2篇
  1980年   7篇
  1979年   2篇
  1967年   1篇
  1962年   1篇
  1959年   11篇
  1951年   11篇
排序方式: 共有10000条查询结果,搜索用时 671 毫秒
31.
本文针对典型高温气冷堆乏燃料厂房在双发商用飞机撞击载荷下的响应及结构完整性开展研究,并探讨结构特性对撞击损伤的影响。对乏燃料厂房及飞机分别建立有限元模型,通过弹体-目标相互作用分析模拟了飞机撞击过程,综合IAEA与NRC的评价准则对乏燃料厂房在飞机撞击下的损伤程度进行评估。数值结果表明:厂房上对应于机身及发动机的撞击位置发生可接受的局部损伤;乏燃料贮存井墙体对于提高构筑物抗飞机撞击能力有重要作用。此外,构筑物外形对损伤有很大影响,圆柱形壳体的抗飞机撞击能力显著强于方形厂房,是核电厂厂房设计的优化方向之一。  相似文献   
32.
This paper investigates the relationship between economic growth, carbon dioxide (CO2) emissions, and energy consumption with an aim to test the validity of the Environmental Kuznets Curve (EKC) hypothesis in five ASEAN (Association of South East Asian Nations) countries (Indonesia, Malaysia, Philippines, Singapore, and Thailand) by applying the panel smooth transition regression (PSTR) model as a new econometric technique. The PSTR model is more flexible and appropriate for describing cross-country heterogeneity and time instability. Our empirical results strongly rejected the null hypothesis of linearity, and the test for no remaining nonlinearity indicated a model with one transition function and two threshold parameters. The first regime (levels of GDP per capita below 4686 USD) showed that environmental degradation increases with economic growth while the trend was reversed in the second regime (GDP per capita above 4686 USD). The results also showed that energy consumption with either the first or the second regime lead to increase CO2. The overall results support the validity of the EKC hypothesis in the ASEAN countries.  相似文献   
33.
NdSrCo2O5+δ (NSCO) is a perovskite with an electrical conductivity of 1551.3 S cm−1 at 500 °C and 921.7 S cm−1 at 800 °C and has a metal-like temperature dependence. This perovskite is used as the cathode material for Ce0.8Gd0.2O2-δ (GDC)-supported microtubular solid oxide fuel cells (MT-SOFCs). The MT-SOFCs fabricated in this study consist of a bilayer anode, comprising a NiO–GDC composite layer and a NiO layer, and a NSCO–GDC composite cathode. Three cell designs with different outer tube diameters, GDC thicknesses, and NSCO/GDC ratios are designed. The MT-SOFC with an outer tube diameter of 1.86 mm, an electrolyte thickness of 180 μm, and a 5NSCO–5GDC composite cathode presents the best performance. The flexural strength of the aforementioned cell is 177 MPa, which is sufficient to confer mechanical integrity to the cell. Moreover, the ohmic and polarization resistance values of the cell are 0.22 and 0.09 Ω cm2 at 700 °C, respectively, and 0.15 and 0.03 Ω cm2 at 800 °C, respectively. These results indicate that the NSCO-GDC composite exhibits high electrochemical activity. The maximum power densities of the cell at 700 and 800 °C are 0.46 and 0.67 W cm−2, respectively, exceeding those of existing electrolyte-supported MT-SOFCs with similar electrolyte thicknesses.  相似文献   
34.
The electrode ionomer is a key factor that significantly affects the catalyst layer morphology and fuel cell performance. Herein, sulfonated poly(arylene ether sulfone)-based electrode ionomers with polymers of various molecular weights and alcohol/water mixtures were prepared, and those comprising the alcohol/water mixture showed a higher performance than the ones prepared using higher boiling solvents, such as dimethylacetamide; this is owing to the formation of the uniformly dispersed ionomer catalyst layer. The relation between ionomer molecular weight for the same polymer structure and the sulfonation degree was investigated. Because the chain length of polymer varies with molecular weight and chain entanglement degree, its molecular weight affects the electrode morphology. As the ionomer covered the catalyst, the agglomerates formed were of different morphologies according to their molecular weight, which could be deduced indirectly through dynamic light scattering and scanning electron microscopy. Additionally, the fuel cell performance was confirmed in the current-voltage curve.  相似文献   
35.
张文静  李静  魏子栋 《化工学报》2020,71(10):4553-4574
燃料电池是将化学能转化成电能的装置,其空气电极催化层的设计,既要包含丰富的、易于接近的反应活性位,也要具备高度连通的电子、质子以及反应物、产物传质通道,因此电极必须具有特定三维几何结构形貌和有序分布的各功能化孔道,确保催化活性位得以充分利用以及反应可以连续进行。针对催化剂孔道的几何结构调控,本文调研了最近报道的一系列研究工作,从模板法、高温相变法、模板/相变复合方法以及基于金属有机框架材料进行孔道设计等四种主要方法出发,综述了该领域的最新研究进展。  相似文献   
36.
It is expected that demand response might provide soon ancillary services to the power system. This could be done, for example, by managing the use of Electric Vehicles (EV) batteries, or the production of flexible energy commodities such as hydrogen (H2), that can be used for fuel cell vehicles (H2EV) or in industrial processes. This paper analyses the impact of a transition to H2EV as an alternative to EV for passengers’ cars on a Spanish-like power sector. A simple H2 demand estimation is developed and provided to CEVESA, an operation and expansion model for the Iberian Power System Electricity Market (MIBEL). For this study, CEVESA was extended to include the investments and operation decisions of H2 production. Simulations were performed to determine the optimal evolution of the H2 production capacity and of the electricity generation mix, considering scenarios with different shares of EV and H2EV. The impact of H2EV vs EV mobility is assessed based on the recent Spanish National Plan for Energy and Climate (NECP) as the base case scenario. Results show that, even if H2EV mobility alternative is still more costly than EV, H2 production could provide a significant flexibility to the system that should also be appraised. Indeed, H2EV mobility could become a feasible and complementary alternative to decarbonize mobility by powering H2 production with the renewable generation surplus. This, together with the on-going learning process of this technology that will decrease its production costs and increase its efficiency in the coming years, could boost, even more, the development of the H2 economy.  相似文献   
37.
Microbial fuel cell (MFC) is a promising technology for simultaneous wastewater treatment and energy harvesting. The properties of the anode material play a critical role in the performance of the MFC. In this study, graphene oxide was prepared by a modified hummer's method. A thin layer of graphene oxide was incorporated on the carbon brush using an electrophoretic technique. The deoxygenated graphene oxide formed on the surface of the carbon brush (RGO-CB) was investigated as a bio-anode in MFC operated with real wastewater. The performance of the MFC using the RGO-CB was compared with that using plain carbon brush anode (PCB). Results showed that electrophoretic deposition of graphene oxide on the surface of carbon brush significantly enhanced the performance of the MFC, where the power density increased more than 10 times (from 33 mWm?2 to 381 mWm?2). Although the COD removal was nearly similar for the two MFCs, i.e., with PCB and RGO-CB; the columbic efficiency significantly increased in the case of RGO-CB anode. The improved performance in the case of the modified electrode was related to the role of the graphene in improving the electron transfer from the microorganism to the anode surface, as confirmed from the electrochemical impedance spectroscopy measurements.  相似文献   
38.
An alternative Equivalent Electrical Circuit for Proton Exchange Membrane Fuel Cells is modelled in this study. Both I–V characteristics and H2 consumptions corresponding to generated power under load and no-load conditions are investigated. For this purpose, H2 consumptions and I–V characteristics of three different sized PEMFCs are tested. There is a very good harmony between the model results and measured values (relative error %0.7, %6.4 and %2.5 for FC-A, FC-B and FC-C respectively). In the proposed model current passes only on parallel resistance and not on serial resistance at no-load condition. Thus, a FC with higher parallel resistance should be preferred. Another key output of this study is that based on the proposed model, performance comparison of FCs can be performed with the parameters defined in this work. Proposals made in this study can easily be used for performance analysis of FCs under for both steady state and transient analysis.  相似文献   
39.
In this study, the crystal structure, thermal, oxygen transport, electrical conductivity and electrochemical properties of the perovskite NdBa0.5Sr0.5Co2O5+δ (NBSC55) are investigated. In the temperature range of 250 °C–350 °C, the weight loss upon heating was due to a partial loss of lattice oxygen and along with a reduction of Co4+ to Co3+. The tend of weight-loss slows down as temperature increased above 350 °C indicating a reduction of Co3+ to Co2+ during this stage. The oxygen migration is dominated by surface exchange process at high temperature range (650-800 °C); however, the bulk diffusion process prevails at low temperature range (500–600 °C). For long-term testing, the polarization resistance of NBSC55 increases gradually form 3.13 Ω cm2 for 2 h to 3.34 Ω cm2 for 96 h at 600 °C and an increasing-rate for polarization resistance is around 0.22% h?1. The power density of the single cell with NBSC55 cathode reached 341 mW cm?2 at 800 °C.  相似文献   
40.
The performance of low-to-intermediate temperature (400–800?°C) solid oxide fuel cells (SOFCs) depends on the properties of electrolyte used. SOFC performance can be enhanced by replacing electrolyte materials from conventional oxide ion (O2-) conductors with proton (H+) conductors because H+ conductors have higher ionic conductivity and theoretical electrical efficiency than O2- conductors within the target temperature range. Electrolytes based on cerate and/or zirconate have been proposed as potential H+ conductors. Cerate-based electrolytes have the highest H+ conductivity, but they are chemically and thermally unstable during redox cycles, whereas zirconate-based electrolytes exhibit the opposite properties. Thus, tailoring the properties of cerate and/or zirconate electrolytes by doping with rare-earth metals has become a main concern for many researchers to further improve the ionic conductivity and stability of electrolytes. This article provides an overview on the properties of four types of cerate and/or zirconate electrolytes including cerate-based, zirconate-based, single-doped ceratezirconate and hybrid-doped ceratezirconate. The properties of the proton electrolytes such as ionic conductivity, chemical stability and sinterability are also systematically discussed. This review further provides a summary of the performance of SOFCs operated with cerate and/or zirconate proton conductors and the actual potential of these materials as alternative electrolytes for proton-conducting SOFC application.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号