首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   70篇
  免费   7篇
  国内免费   71篇
地球科学   148篇
  2023年   2篇
  2022年   2篇
  2021年   4篇
  2019年   2篇
  2018年   3篇
  2016年   8篇
  2015年   2篇
  2014年   10篇
  2013年   4篇
  2012年   5篇
  2011年   7篇
  2010年   2篇
  2009年   7篇
  2008年   6篇
  2007年   5篇
  2006年   15篇
  2005年   3篇
  2004年   6篇
  2003年   8篇
  2002年   2篇
  2001年   4篇
  2000年   5篇
  1999年   4篇
  1998年   5篇
  1997年   4篇
  1996年   7篇
  1995年   3篇
  1994年   2篇
  1993年   1篇
  1992年   2篇
  1991年   5篇
  1990年   1篇
  1988年   2篇
排序方式: 共有148条查询结果,搜索用时 46 毫秒
91.
铜矿位于哀牢山推覆构造带上,含矿地层为哀牢山岩群凤港岩组,属火山—沉积变质铜矿,具有较好的地质成矿背景和地球化学成矿背景,找矿潜力大。  相似文献   
92.
南天山北缘榆树沟麻粒岩主要为基性麻粒岩,由多个变质程度不同(低、中、高压麻粒岩相)的岩片被构造作用拼贴到一起。本文对不同麻粒岩开展详细的岩相学研究,识别出的变质作用有:进变质角闪岩相、低压麻粒岩相、中压麻粒岩相、高压麻粒岩相和退变质的中压麻粒岩相、角闪岩相、绿片岩相变质作用。对于有成熟温压计的中压麻粒岩相(即Grt-Opx-Cpx-Plg-Qtz组合)矿物组合的样品进行了温压估算,获得的温度和压力范围为724~826℃和0.64~0.88GPa。对原岩为火山岩的中压麻粒岩相岩石的锆石核部的研究表明,锆石的来源复杂;SHRIMP锆石U-Pb年代学测定显示,锆石的变质生成边的年龄稳定,为390~401Ma,代表了中压麻粒岩相进变质作用的时代。  相似文献   
93.
In many Precambrian provinces the understanding of the tectonic history is constrained by limited exposure and aeromagnetic data provide information below the surface cover of sediments,water,etc.and help build a tectonic model of the region.The advantage of using the aeromagnetic data is that the data set has uniform coverage and is independent of the accessibility of the region.In the present study,available reconnaissance scale aeromagnetic data over Peninsular India are analyzed to understand the magnetic signatures of the Precambrian shield and suture zones thereby throwing light on the tectonics of the region.Utilizing a combination of differential reduction to pole map,analytic signal,vertical and tilt derivative and upward continuation maps we are able to identify magnetic source distribution,tectonic elements,terrane boundaries,suture zones and metamorphic history of the region.The magnetic sources in the region are mainly related to charnockites,iron ore and alkaline intrusives.Our analysis suggests that the Chitradurga boundary shear and Sileru shear are terrane boundaries while we interpret the signatures of Palghat Cauvery and Achankovil shears to represent suture zones.Processes like metamorphism leave their signatures on the magnetic data:prograde granulites(charnockites)and retrograde eclogites are known to have high susceptibility.We fnd that charnockites intruded by alkali plutons have higher magnetization compared to the retrogressed charnockites.We interpret that the Dharwar craton to the north of isograd representing greenschist to amphibolite facies transition,has been subjected to metamorphism under low geothermal conditions.Some recent studies suggest a plate tectonic model of subductionecollisioneaccretion tectonics around the Palghat Cauvery shear zone(PCSZ).Our analysis is able to identify several west to east trending high amplitude magnetic anomalies with deep sources in the region from Palghat Cauvery shear to Achankovil shear.The magnetic high associated with PCSZ may represent the extruded high pressureeultra high temperature metamorphic belt(granulites at shallow levels and retrogressed eclogites at deeper levels)formed as a result of subduction process.The EW highs within the Madurai block can be related to the metamorphosed clastic sediments,BIF and mafc/ultramafc bodies resulting from the process of accretion.  相似文献   
94.
The Eastern Ghats Belt is a polycyclic granulite terrain along the east coast of India whose western boundary is marked by a shear zone along which the granulites are thrusted over the cratonic units of the Indian shield, and its northern margin is marked by the presence of a number of fault-bounded blocks. Recent work has convincingly brought out that there are domains within the belt having different evolutionary histories. The segment south of the Godavari Rift went through a high grade thermo-tectonic event at ∼1.6–1.7 Ga. North of the Godavari Rift in a narrow zone along the western boundary the last high-grade metamorphic event is of late Archaean age. A series of alkaline plutons along the western boundary zone testifies to a rifting episode at ∼1.3–1.5 Ga. In the major part of the EGB the metamorphism is broadly of Grenvillian age, with two major thermo-tectonic pulses at ∼1.1–1.2 Ga and ∼0.95–1.0 Ga. But high grade conditions persisted for a long period and younger thermal events of ∼0.65 Ga to ∼0.80 Ga are locally recorded. There are differences in the tectonometamorphic histories of different domains, but the tectonic significance of these differences remains uncertain. Pan-African (0.50–0.55) thermal overprints are common and become conspicuous along the western boundary zone. The thrusting of the Eastern Ghats granulites in a hot state over the cratons to the west is of Pan-African age. In the Rodinia assembly (∼0.9 Ga) the Eastern Ghats and the Rayner-Napier Complexes of Antarctica were contiguous, but the pre-Rodinia configuration of these terrains remains unclear. At ∼0.8 Ga during the Rodinia break up Greater India rifted apart from East Antarctica, and only later it docked with Australia-East Antarctica at 530–550 Ma. The continuation of the East Antarctic Pan-African orogenic belts into the Eastern Ghats is yet to be ascertained.  相似文献   
95.
李晓春  于津海  桑丽芹  罗莉  朱国荣 《岩石学报》2009,25(12):3346-3356
早古生代西伯利亚克拉通南缘发生了大规模的增生-碰撞造山运动,本文研究的地区--奥里洪地块记录了巴尔古津微板块与西伯利亚克拉通碰撞造山的事件.对奥里洪地块出露的两种典型的高级变质岩--石榴辉石岩和石榴黑云片麻岩的矿物成分分析和变质温压计算,表明它们都经历了麻粒岩相的峰期变质作用,峰期变质温度达到770~800℃,而压力曾达到1.0GPa左右:峰后的退变质作用仍具有较高的温度,但压力明显降低(700~730℃,0.065GPa和710~766℃,0.50GPa),显示了一个近等温降压(ITD)的顺时针P-T轨迹特征.石榴黑云片麻岩中变质锆石的原位LA-ICP-MS U-Pb定年表明,麻粒岩相峰期变质年龄为479±2Ma,而峰前变质可能在500Ma就已经开始.峰后的退变质作用很可能发生在475~460Ma之后.整个造山作用持续了至少35Ma.对比蒙古-图瓦地块及中国东北佳木斯-额尔古纳地块已厘定出的变质作用及岩浆活动年龄可以发现,西伯利亚克拉通南缘不同地区增生-碰撞造山作用发生的时间是不同的,奥里洪地区造山作用相对年轻.  相似文献   
96.
A new occurrence of the rare corundum + quartz assemblage and magnesian staurolite has been found in a gedrite–garnet rock from the Central Zone of the Neoarchean Limpopo Belt in Zimbabwe. Poikiloblastic garnet in the sample contains numerous inclusions of corundum + quartz ± sillimanite, magnesian staurolite + sapphirine ± orthopyroxene, and sapphirine + sillimanite assemblages, as well as monophase inclusions. Corundum, often containing subhedral to rounded quartz, occurs as subhedral to euhedral inclusions in the garnet. Quartz and corundum occur in direct grain contact with no evidence of a reaction texture. The textures and Fe–Mg ratios of staurolite inclusions and the host garnet suggest a prograde dehydration reaction of St → Grt + Crn + Qtz + H2O to give the corundum + quartz assemblage. Peak conditions of 890–930 °C at 9–10 kbar are obtained from orthopyroxene + sapphirine and garnet + staurolite assemblages. A clockwise PT path is inferred, with peak conditions being followed by retrograde conditions of 4–6 kbar and 500–570 °C. The presence of unusually magnesian staurolite (Mg / [Fe + Mg] = 0.47–0.53) and corundum + garnet assemblages provides evidence for early high-pressure metamorphism in the Central Zone, possibly close to eclogite facies. The prograde high-pressure event followed by high- to ultrahigh-temperature metamorphism and rapid uplifting of the Limpopo Belt could have occurred as a result of Neoarchean collisional orogeny involving the Zimbabwe and Kaapvaal Cratons.  相似文献   
97.
In the present study, we describe and discuss the geology of aluminous–magnesian granulites and associated garnet-bearing charnockitic granulite from the Brejões Dome area, located in the Jequié Block, part of the São Francisco Craton in Bahia, Brazil. Investigation of metamorphic mineral assemblages allows the evaluation of PT conditions for the formation of these rocks, and therefore to obtain constraints for the better understanding of the geological evolution of the area. We conclude that the rocks from the Brejões Dome area were formed under granulite facies conditions of low to intermediate pressure (5–8 kbar). Temperatures determined in samples of aluminous–magnesian granulites collected away from the dome are in the order of 850 °C, similar to those determined elsewhere in the southern part of the Itabuna–Salvador–Curaçá Orogen. However, samples of the same rock type collected close to the Brejões Dome are hercynite + quartz-bearing and record higher temperatures of about 900–1000 °C. It is suggested that the intrusion of the Brejões charnockite diapir was responsible for a local increase in temperature above the peak temperature of regional granulite metamorphism.  相似文献   
98.
Modelling of gravity and airborne magnetic data integrated with seismic studies suggest that the linear gravity and magnetic anomalies associated with Moyar Bhavani Shear Zone (MBSZ) and Palghat Cauvery Shear Zone (PCSZ) are caused by high density and high susceptibility rocks in upper crust which may represent mafic lower crustal rocks. This along with thick crust (44–45 km) under the Southern Granulite Terrain (SGT) indicates collision of Dharwar craton towards north and SGT towards south with N–S directed compression during 2.6–2.5 Ga. This collision may be related to contemporary collision northwards between Eastern Madagascar–Western Dharwar Craton (WDC) and Eastern Dharwar Craton (EDC). Arcuate shaped N and S-verging thrusts, MBSZ-Mettur Shear and PCSZ-Gangavalli Shear, respectively across Cauvery Shear zone system (CSZ) in SGT also suggest that the WDC, EDC and SGT might have collided almost simultaneously during 2.6–2.5 Ga due to NW–SE directed compressional forces with CSZ as central core complex in plate tectonics paradigm preserving rocks of oceanic affinity. Gravity anomalies of schist belts of WDC suggest marginal and intra arc basin setting.The gravity highs of EGFB along east coast of India and regional gravity low over East Antarctica are attributed to thrusted high-density lower crustal/upper mantle rocks at a depth of 5–6 km along W-verging thrust, which is supported by high seismic velocity and crustal thickening, respectively. It may represent a collision zone at about 1.0 Ga between India and East Antarctica. Paired gravity anomalies in the central part of Sri Lanka related to high density intrusives under western margin of Highland Complex and crustal thickening (40 km) along eastern margin of Highland Complex with several arc type magmatic rocks of about 1.0 Ga in Vijayan Complex towards the east may represent collision between them with W-verging thrust as in case of EGFB. The gravity high of Sri Lanka in the central part falls in line with that of EGFB, in case it is fitted in Gulf of Mannar and may represent the extension of this orogeny in Sri Lanka.  相似文献   
99.
The study region forms the western part of the Madurai block (southern block) and shares several lithological characteristics of the Proterozoic exhumed South Indian Granulite Terrain (SGT). The crustal structure of the area has been derived from gravity data, constrained partly by aeromagnetic data. The Bouguer anomaly map of the region prepared based on detailed gravity observations shows a number of features (i) the Periyar lineament separates two distinctly different gravity fields, one, a high gravity gradient tending to be positive towards the coast in south west and significant gravity lows ranging from − 85 to as low as − 150 mGal in the NE covering a large part of the Periyar plateau (ii) within the broad gravity low, three localised circular anomalies of considerable amplitude occur in the region of Munnar granite. A magnetic low region in the central part coincides with the area of retrogressed charnockites and the major lineaments suggestive of a genetic link and considerable downward extent. The crustal models indicate that the upper layer containing exhumed lower crustal rocks (2.76 gm/cc) is almost homogeneous, most part of the gravity field resulting from variations in intracrustal layers of decharnockitised hornblendic gneisses and granite bodies. Below it, a denser layer (2.85 gm/cc) of unknown composition exists with Moho depth ranging from 36 to 41 km. The structure below the region is compared with that of two other segments of the SGT from which it differs markedly. The Wynad plateau forming the western part of the Northern Block of the SGT is characterised by a heterogeneity due to the presence of contrasting crustal blocks on either side of the Bavali shear zone, possibly a westward extension of the Moyar shear zone and presence of high density material in the mid-to-lower crustal portions. The crust below the Kuppam–Palani transect has a distinctive four-layer structure with a mid-crustal low density layer. The differences in crustal structure are consistent with the different tectonic settings of the three regions discussed in the paper. It is suggested that the crustal structure below the Kuppam–Palani transect corridor is not representative of the SGT as a whole, an aspect of great relevance to intra-continental comparisons and trans-continental reconstructions of continent configurations of the Gondwanaland.  相似文献   
100.
The origin of magmatic layering is still hotly debated. To try to shed some light on this problem, two ultramafic–mafic layered xenoliths from Puy Beaunit (French Massif Central) were investigated in detail. The nodules belong to a stratiform intrusion emplaced in the deep crust during the Permian (257 ± 6 Ma; Féménias, O., Coussaert, N., Bingen, B., Whitehouse, M., Mercier, J.-C., Demaiffe, D., 2003. A Permian underplating event in late- to post-orogenic tectonic setting. Evidence from the mafic–ultramafic layered xenoliths from Beaunit (French Massif Central). Chem. Geol. 199 293–315.). The 3 to 5 cm thick nodules have, in common, a central orthopyroxenite layer; the succession of layers is, respectively, norite–orthopyroxenite–norite (PBN 00-01) and norite–orthopyroxenite–harzburgite (PBN 00-03). The variations of both major (by electron microprobe) and trace, essentially the RE, elements (by LA-ICP-MS) were measured in major mineral phases (orthopyroxene, clinopyroxene, plagioclase, spinel) along cross-section perpendicular to the layering. Strong grain size, chemical and textural variations occur along these sections: they can be continuous or discontinuous, symmetrical or asymmetrical. Such complex variations cannot be solely related to a single magmatic history (fractional crystallisation, mineral sorting). Other processes such as element enrichment by residual liquid channelling along layer boundaries and/or sub-solidus recrystallisation and element redistribution must be invoked. It appears, in particular, that element distribution in the central orthopyroxenite layer could result from the injection of micro-sills of orthopyroxene-rich liquid between previously consolidated layers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号