首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1933篇
  免费   369篇
  国内免费   710篇
地球科学   3012篇
  2024年   4篇
  2023年   21篇
  2022年   49篇
  2021年   62篇
  2020年   89篇
  2019年   86篇
  2018年   123篇
  2017年   178篇
  2016年   213篇
  2015年   135篇
  2014年   131篇
  2013年   144篇
  2012年   153篇
  2011年   140篇
  2010年   95篇
  2009年   142篇
  2008年   146篇
  2007年   162篇
  2006年   130篇
  2005年   133篇
  2004年   83篇
  2003年   93篇
  2002年   74篇
  2001年   60篇
  2000年   52篇
  1999年   78篇
  1998年   41篇
  1997年   27篇
  1996年   32篇
  1995年   16篇
  1994年   27篇
  1993年   13篇
  1992年   15篇
  1991年   6篇
  1990年   8篇
  1989年   3篇
  1988年   5篇
  1987年   5篇
  1986年   3篇
  1985年   5篇
  1984年   5篇
  1983年   9篇
  1982年   4篇
  1981年   5篇
  1980年   6篇
  1976年   1篇
排序方式: 共有3012条查询结果,搜索用时 15 毫秒
81.
Thirteen new species referable to four genera, of which one is new, from the Cretaceous of Russia and Mongolia are established herein and assigned to the family Pelecinidae. Among the four genera, Protopelecinus gen. nov., including four new species, is referred to the subfamily Pelecininae, while Iscopinus Kozlov, including three new species, Eopelecinus Zhang, Rasnitsyn and Zhang, including five new species, and Scorpiopelecinus laetus sp. nov. are assigned to the subfamily Iscopininae. Of these new taxa, eight, namely Protopelecinus regularis, P. furtivus, Iscopinus simplex, ?I. suspectus, Eopelecinus exquisitus, E. scorpioideus, E. rudis and Scorpiopelecinus laetus, are from the Lower Cretaceous Zaza Formation of Baissa, Transbaikalia, Russia; two, E. minutus and E. fragilis, are from the basal Lower Cretaceous Tsagan-Tsab Formation of Khutel-Khara, Mongolia; two, P. dubius and P. deformis, are from the Lower Cretaceous (Aptian?) of Bon Tsagan, Mongolia; and one, I. separatus, is from the Upper Cretaceous (Cenomanian) Ola Formation of Obeshchayushchiy, Russia. A key to fossil pelecinid wasps is provided and a morphological analysis shows that the Pelecinidae might be paraphyletic with respect to the Proctotrupidae. The Chinese insect fauna from both the Yixian and Laiyang formations is dominated by Eopelecinus and Sinopelecinus whereas the Siberian + Mongolian fauna from the Zaza and Tsagan-Tsab formations is dominated by Eopelecinus and Iscopinus. Hence, Eopelecinus is common to both. The differences between the two faunas are likely to be the result of geographical variation in populations.  相似文献   
82.
The middle–late Campanian was marked by an increase in the bioprovinciality of calcareous microfossil assemblages into distinct Tethyan, Transitional, and Austral Provinces that persisted to the end of the Maastrichtian. The northwestern Australian margin belonged to the Transitional Province and the absence of key Tethyan marker species such as Radotruncana calcarata and Gansserina gansseri has led petroleum companies operating in the area to use the locally developed KCCM integrated calcareous microfossil zonation scheme. The KCCM zonation is a composite scheme comprising calcareous nannofossil (KCN), planktonic foraminiferal (KPF) and benthonic foraminiferal (KBF) zones. This paper presents the definitions and revisions of Zones KCCM8–19, from the highest occurrence (HO) of Aspidolithus parcus constrictus to the lowest occurrence (LO) of Ceratolithoides aculeus, and builds on our previous early–late Maastrichtian study. The presence of a middle–upper Campanian disconformity is confirmed by microfossil evidence from the Vulcan Sub-basin, Exmouth and Wombat plateaus, and the Southern Carnarvon Platform. In the Vulcan Sub-basin and on the Exmouth Plateau (ODP Hole 762C) the hiatus extends from slightly above the LO of common Rugoglobigerina rugosa to above the LO of Quadrum gothicum. On the Wombat Plateau (ODP Hole 761B) it spans from above the LO of Heterohelix semicostata to above the LO of Quadrum gothicum; and in the Southern Carnarvon Platform the disconformity has its longest duration from above the HO of Heterohelix semicostata to above the LO of Quadrum sissinghii. A significant revision of the events which define Zones KCCM18 and 19 was necessary owing to the observation that the LO of Ceratolithoides aculeus occurs below the HOs of Archaeoglobigerina cretacea and Stensioeina granulata incondita and the LO of common Rugoglobigerina rugosa. In the original zonation these events were considered to be coincident.  相似文献   
83.
The diagnoses of the conchostracan genera Cratostracus and Porostracus are revised following a re-examination of their type species under a scanning electron microscope. In Cratostracus each growth line has a serrated lower margin. Radial lirae branch into smaller ridges that merge with each other to give the upper part of each growth band in the ventral region of the carapace a slightly undulating surface. Cross-bars are present between these lirae. In Porostracus the radial lirae on the growth bands near the umbo are long and relatively widely spaced. There is a fine reticulum between them in the umbonal part of the carapace and cross-bars on the ventral surface. The ornament of Porostracus indicates that it can be assigned to the family Halysestheriidae rather than to the Afrograptidae, in which it has been placed previously. Morphological analysis of most of the species of the two genera and closely related Orthestheria (Migransia) under the scanning electron microscope is required before their stratigraphic potential can be fully realized.  相似文献   
84.
Atsushi  Matsuoka  Qun  Yang  Masahiko  Takei 《Island Arc》2005,14(4):338-345
Abstract The Xialu chert radiolarian fauna is latest Jurassic–earliest Cretaceous in age (Pseudodictyomitra carpatica zone) and contains many taxa in common with coeval northern hemisphere middle‐latitude (temperate) radiolarian faunas represented by the Torinosu fauna in southwest Japan. Common elements include Eucyrtidiellum pyramis (Aita), Protunuma japonicus Matsuoka & Yao, Sethocapsa pseudouterculus Aita, Sethocapsa (?) subcrassitestata Aita, Archaeodictyomitra minoensis (Mizutani), Stichocapsa praepulchella Hori and Xitus gifuensis (Mizutani). The Xialu fauna is less similar to low‐latitude (tropical) assemblages represented by the Mariana fauna. For this reason, the Xialu fauna is regarded as representative of a southern hemisphere middle‐latitude (temperate) fauna. A mirror‐image bi‐temperate provincialism to the equator in radiolarian faunas is reconstructed for the Ceno‐Tethys and Pacific Ocean in latest Jurassic–earliest Cretaceous time.  相似文献   
85.
通过钻井、岩芯和测井等资料的分析,清水河组清一段划分出1个长期基准面旋回、2个中期基准面旋回和5个短期基准面旋回。MSC1中期基准面旋回主要为辫状河三角洲沉积,MSC2中期基准面旋回为湖泊相沉积,局部地区夹有辫状三角洲沉积,极易形成岩性油气藏。区域性隔层发育在非对称型长期基准面旋回的上部,有利的储集体主要分布于中期基准面上升的早期。  相似文献   
86.
The diagnosis of Estherites corrugatus from the basal part of the Coniacian Second Member of the Nenjiang Formation in Nenjiang County, north-east China is revised following the application of a new preparation technique to some of the carapaces and an examination of specimens under a scanning electron microscope, both of which revealed morphological features on the carapace that had not been recognized previously. Restudy of the type species of the two subgenera Estherites (Euestherites) and Estherites (Parestherites) also revealed details of carapace features not seen hitherto. These indicate that they should be separated from Estherites. As a result, Euestherites is upgraded to genus level and Parestherites is placed in synonymy. The importance of Estherites and Euestherites is considered in the context of Late Cretaceous assemblages of these crustaceans and the three conchostracan provinces (South-West, South-East and North China) that are recognized to have been present in China during the Turonian–Santonian period.  相似文献   
87.
正20141283 Bai Daoyuan(Hunan Institute of Geological Survey,Changsha 410016,China);Zhong Xiang Nature,Origin and Tectonic Setting of Jinzhou Basin in the South Segment of Xuefeng Orogen(Geology in China,ISSN1000-3657,CN11-1167/P,40(4),2013,p.1079-1091,10 illus.,47 refs.)Key words:foreland basins,strike-slip faults,Hunan Province  相似文献   
88.
Whether the formation of the isolated sand body deposition in the forebulge area of a foreland basin system is structure- or deposition-controlled has puzzled geologists for decades, although sand body deposition is generally believed to be indicative of the position of the flexural forebulge in a foreland basin. The formation of a modern sand body in the forebulge area is thus examined by multi-scale geophysical observations based on combined reflection seismic profiles and compressed high-intensity radar pulse (CHIRP) profiles across the sand deposition along the forebulge of the Western Taiwan Foreland Basin (WTFB), which is a Late Miocene-present foreland basin in the overfilled stage. These profiles suggest that the accumulation of the sand deposits along the forebulge of the WTFB is not directly associated with forebulge faultings. The relief map of the forebulge deposit substratum shows a northwestward tilting slope, and the isopach of the forebulge sand body indicates that a large part of the sand body accumulated along the axis of the Taiwan Strait and the subdued forebulge of the WTFB. The difference between the prevailing directions of tidal currents between the Taiwan Strait and the East China Sea reflects the probable sedimentary influence of the cratonward migrating fold-thrust belt within a foreland shelf. We suggest that the formation and distribution of the sand deposits along the forebulge of the WTFB are generally controlled not only by the transverse downslope sedimentation but also longitudinal hydrodynamic processes at distal parts of the foreland basin. Our explanation provides a plausible tectono-sedimentary cause of the sand body deposition in the forebulge area in an overfilled foreland basin. The sedimentary dynamics of the sand body in the Taiwan Strait may be applicable for understanding the formation of isolated sand bodies in the distal part of the Cretaceous Western Interior Foreland Basin.  相似文献   
89.
Late Cretaceous coals and coaly source rocks are the main source of hydrocarbons in the Taranaki Basin, yet to date there have not been any hydrocarbon discoveries within Cretaceous strata, and sandstone distribution and reservoir quality for this interval have been poorly understood. The Late Cretaceous sediments were deposited in several sub-basins across Taranaki, with their distribution largely determined by sediment supply, subsidence, and sea level change. In this study, we describe potential reservoir facies in well penetrations of Cretaceous strata in Taranaki, as well as from outcrop in northwest Nelson, on the southern edge of the basin.  相似文献   
90.
The Upper Cretaceous succession of the Leonese Area (NW Spain) comprises mixed clastic and carbonate sediments. This succession is divided into two lithostratigraphic units, the Voznuevo Member and the Boñar Formation, which represent fluvial, shoreface, intertidal, subtidal and open‐shelf sedimentary environments. Regional seismic interpretation and sequence stratigraphic analysis have allowed the study of lateral and vertical changes in the sedimentary record and the definition of third‐order levels of stratigraphic cyclicity. On the basis of these data, the succession can be divided into two second‐order depositional sequences (DS‐1 and DS‐2), incorporating three system tracts in a lowstand to transgressive to highstand system tract succession (LST–TST–HST). These sequences are composed of fluvial systems at the base with palaeocurrents that flowed westward and south‐westward. The upper part of DS‐1 (Late Albian–Middle Turonian) shows evidence of intertidal to subtidal and offshore deposits. DS‐2 (Late Turonian–Campanian) comprises intertidal to subtidal, tidal flat, shallow marine and lacustrine deposits and interbedded fluvial deposits. Two regressive–transgressive cycles occurred in the area related to eustatic controls. The evolution of the basin can be explained by base‐level changes and associated shifts in depositional trends of successive retrogradational episodes. By using isobath and isopach maps, the main palaeogeographic features of DS‐1 and DS‐2 were constrained, namely coastline positions, the existence and orientation of corridors through which fluvial networks were channelled and the location of the main depocentres of the basin. Sedimentation on the Upper Cretaceous marine platform was mainly controlled by (i) oscillations of sea level and (ii) the orientation of Mesozoic faults, which induced sedimentation along depocentres. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号