首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   188271篇
  免费   19325篇
  国内免费   8213篇
工业技术   215809篇
  2024年   540篇
  2023年   2157篇
  2022年   4277篇
  2021年   5289篇
  2020年   5757篇
  2019年   4756篇
  2018年   4377篇
  2017年   5879篇
  2016年   6475篇
  2015年   6997篇
  2014年   12743篇
  2013年   11245篇
  2012年   14911篇
  2011年   15488篇
  2010年   11430篇
  2009年   11594篇
  2008年   10818篇
  2007年   13371篇
  2006年   12140篇
  2005年   10419篇
  2004年   8357篇
  2003年   7280篇
  2002年   6005篇
  2001年   4948篇
  2000年   4135篇
  1999年   3073篇
  1998年   2163篇
  1997年   1773篇
  1996年   1508篇
  1995年   1274篇
  1994年   1024篇
  1993年   689篇
  1992年   580篇
  1991年   414篇
  1990年   328篇
  1989年   316篇
  1988年   206篇
  1987年   206篇
  1986年   147篇
  1985年   151篇
  1984年   166篇
  1983年   106篇
  1982年   90篇
  1981年   37篇
  1980年   35篇
  1979年   31篇
  1978年   16篇
  1977年   16篇
  1959年   14篇
  1951年   12篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
91.
Traditional maximum power point tracking (MPPT) methods can hardly find global maximum power point (MPP) because output characteristics curve of photovoltaic (PV) array may have multi local maximum power points in irregular shadow, and thus easily fall into the local maximum power point. To address this drawback, Considering that sliding mode variable structure (SMVS) control strategy have such advantages as simple structure, fast response and strong robustness, and P&O method have the advantages of simple principle and convenient implementation, so a new algorithm combining SMVS control method and P&O method is proposed, besides, PI controller is applied to reduce system chattering caused by switching sliding surface. It is applied to MPPT control of PV array in irregular shadow to solve the problem of multi-peak optimization in partial shadow. In order to verity the rationality of the proposed algorithm, the experimental circuit is built, which achieves MPPT control by means of the proposed algorithm and P&O method. The experimental results show that compared with the traditional P&O algorithm, the proposed algorithm can fast track the global MPP, tracking speed increases by 60% and the relative error decreased by 20%. Moreover, the system becomes more stable near the MPP, the fluctuations of output power is greatly reduced, and thus make full use of solar energy.  相似文献   
92.
Advanced biogas power generation technology has been attracting attentions, which contributes to the waste disposal and the mitigation of greenhouse gas emissions. This work proposes and models a novel biogas-fed hybrid power generation system consisting of solid oxide fuel cell, water gas shift reaction, thermal swing adsorption and proton exchange membrane fuel cell (SOFC-WGS-TSA-PEMFC). The thermodynamic, exergetic, and thermo-economic analyses of this hybrid system for power generation were conducted to comprehensively evaluate its performance. It was found that the novel biogas-fed hybrid system has a gross energy conversion efficiency of 68.63% and exergy efficiency of 65.36%, indicating high efficiency for this kind of hybrid power technology. The market sensitivity analysis showed that the hybrid system also has a low sensitivity to market price fluctuation. Under the current subsidy level for the distributed biogas power plant, the levelized cost of energy can be lowered to 0.02942 $/kWh for a 1 MW scale system. Accordingly, the payback period and annual return on investment can reach 1.4 year and about 20%, respectively. These results reveal that the proposed hybrid system is promising and economically feasible as a distributed power plant, especially for the small power scale (no more than 2 MW).  相似文献   
93.
Anthropogenic influences, including climate change, are increasing river temperatures in northern and temperate regions and threatening the thermal habitats of native salmonids. When river temperatures exceed the tolerance levels of brook trout and Atlantic salmon, individuals exhibit behavioural thermoregulation by seeking out cold‐water refugia – often created by tributaries and groundwater discharge. Thermal infrared (TIR) imagery was used to map cold‐water anomalies along a 53 km reach of the Cains River, New Brunswick. Trout and salmon parr did not use all identified thermal anomalies as refugia during higher river temperature periods (>21°C). Most small‐bodied trout (8–30 cm) were observed in 80% of the thermal anomalies sampled. Large‐bodied trout (>35 cm) required a more specific set of physical habitat conditions for suitable refugia, that is, 100% of observed large trout used 30% of the anomalies sampled and required water depths >65 cm within or adjacent to the anomaly. Densities of trout were significantly higher within anomalies compared with areas of ambient river temperature. Salmon parr were less aligned with thermal anomalies at the observed temperatures, that is, 59% were found in 65% of the sampled anomalies; and densities were not significantly different within/ outside anomalies. Salmon parr appeared to aggregate at 27°C, and after several events over 27°C variability in aggregation behaviour was observed – some fish aggregated at 25°C, others did not. We stipulate this is due to variances of thermal fatigue. Habitat suitability curves were developed for velocity, temperature, depth, substrate, and deep water availability to characterize conditions preferred by fish during high‐temperature events. These findings are useful for managers as our climate warms, and can potentially be used as a tool to help conserve and enhance thermal refugia for brook trout and Atlantic salmon in similar systems.  相似文献   
94.
95.
The high cost and potential toxicity of biodegradable polymers like poly(lactic‐co‐glycolic)acid (PLGA) has increased the interest in natural and modified biopolymers as bioactive carriers. This study characterized the physical stability (water sorption and state transition behavior) of selected starch and proteins: octenyl succinate–modified depolymerized waxy corn starch (DWxCn), waxy rice starch (DWxRc), phytoglycogen, whey protein concentrate (80%, WPC), whey protein isolate (WPI), and α‐lactalbumin (α‐L) to determine their potential as carriers of bioactive compounds under different environmental conditions. After enzyme modification and particle size characterization, glass transition temperature and moisture isotherms were used to characterize the systems. DWxCn and DWxRc had increased water sorption compared to native starch. The level of octenyl succinate anhydrate (OSA) modification (3% and 7%) did not reduce the water sorption of the DWxCn and phytoglycogen samples. The Guggenheim–Andersen–de Boer model indicated that native waxy corn had significantly (P < 0.05) higher water monolayer capacity followed by 3%‐OSA‐modified DWxCn, WPI, 3%‐OSA‐modified DWxRc, α‐L, and native phytoglycogen. WPC had significantly lower water monolayer capacity. All Tg values matched with the solid‐like appearance of the biopolymers. Native polysaccharides and whey proteins had higher glass transition temperature (Tg) values. On the other hand, depolymerized waxy starches at 7%‐OSA modification had a “melted” appearance when exposed to environments with high relative humidity (above 70%) after 10 days at 23 °C. The use of depolymerized and OSA‐modified polysaccharides blended with proteins created more stable blends of biopolymers. Hence, this biopolymer would be suitable for materials exposed to high humidity environments in food applications.  相似文献   
96.
针对传统的小区内开环功率控制算法通常以提升本小区的吞吐量性能为目标,忽略了当前小区用户对邻小区用户同频干扰的问题,为提升边缘用户性能的同时兼顾系统整体性能,提出了一种LTE系统小区间上行联合功率控制(UJPC)算法。该算法采用单基站三扇区为系统模型,以最优化系统吞吐量比例公平函数为目标,首先根据最小信干噪比(SINR)约束值和用户最大发射功率这两个约束条件得到相应的数学优化模型,然后采用连续凸近似的方法求解优化问题得出各个基站所管辖的小区内所有用户的最优发射功率。仿真结果表明,与基准的开环功控方案相比,联合功控方案在保证系统平均频谱利用率的情况下能够较大幅度地提高小区边缘频谱利用率,其最佳性能增益能达到50%。  相似文献   
97.
Developing highly active, stable and sustainable electrocatalysts for overall water splitting is of great importance to generate renewable H2 for fuel cells. Herein, we report the synthesis of electrocatalytically active, nickel foam-supported, spherical core-shell Fe-poly(tetraphenylporphyrin)/Ni-poly(tetraphenylporphyrin) microparticles (FeTPP@NiTPP/NF). We also show that FeTPP@NiTPP/NF exhibits efficient bifunctional electrocatalytic properties toward both the oxygen evolution reaction (OER) and the hydrogen evolution reaction (HER). Electrochemical tests in KOH solution (1 M) reveal that FeTPP@NiTPP/NF electrocatalyzes the OER with 100 mA cm−2 at an overpotential of 302 mV and the HER with 10 mA cm−2 at an overpotential of 170 mV. Notably also, its catalytic performance for OER is better than that of RuO2, the benchmark OER catalyst. Although its catalytic activity for HER is slightly lower than that of Pt/C (the benchmark HER electrocatalyst), it shows greater stability than the latter during the reaction. The material also exhibits electrocatalytic activity for overall water splitting reaction at a current density of 10 mA cm−2 with a cell voltage of 1.58 V, along with a good recovery property. Additionally, the work demonstrates a new synthetic strategy to an efficient, noble metal-free-coordinated covalent organic framework (COF)-based, bifunctional electrocatalyst for water splitting.  相似文献   
98.
为解决21000工作面采空区及顶板涌水问题,根据工作面出水点的不同情况,采取了集水器导水、老塘设挡水堰截水、挖排水沟疏水等多项治水措施,经统计排水量达33~42m3/h,有效控制了水情,确保了工作面正常生产。  相似文献   
99.
100.
The present study was aimed to utilize low‐cost alumina (Al2O3) nanoparticles for improving the heat transfer behavior in an intercooler of two‐stage air compressor. Experimental investigation was carried out with three different volume concentrations of 0.5%, 0.75%, and 1.0% Al2O3/water nanofluids to assess the performance of the intercooler, that is, counterflow heat exchanger at different loads. Thermal properties such as thermal conductivity and overall heat transfer coefficient of nanofluid increased substantially with increasing concentration of Al2O3 nanoparticles. Specific heat capacity of nanofluids were lower than base water. The intercooler performance parameters such as effectiveness and efficiency improved appreciably with the employment of nanofluid. The efficiency increased by about 6.1% with maximum concentration of nanofluid, that is, 1% at 3‐bar compressor load. It is concluded from the study that high concentration of Al2O3 nanoparticles dispersion in water would offer better heat transfer performance of the intercooler.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号