首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   927篇
  免费   49篇
  国内免费   1篇
生物科学   977篇
  2022年   2篇
  2021年   15篇
  2020年   10篇
  2019年   7篇
  2018年   12篇
  2017年   12篇
  2016年   23篇
  2015年   48篇
  2014年   39篇
  2013年   65篇
  2012年   77篇
  2011年   63篇
  2010年   46篇
  2009年   33篇
  2008年   61篇
  2007年   69篇
  2006年   60篇
  2005年   70篇
  2004年   50篇
  2003年   52篇
  2002年   51篇
  2001年   6篇
  2000年   10篇
  1999年   8篇
  1998年   10篇
  1997年   11篇
  1996年   8篇
  1995年   5篇
  1994年   3篇
  1993年   5篇
  1992年   2篇
  1991年   5篇
  1990年   4篇
  1989年   2篇
  1988年   3篇
  1987年   1篇
  1986年   2篇
  1985年   3篇
  1984年   4篇
  1983年   5篇
  1982年   1篇
  1981年   3篇
  1980年   3篇
  1977年   3篇
  1976年   1篇
  1974年   1篇
  1973年   1篇
  1967年   1篇
  1937年   1篇
排序方式: 共有977条查询结果,搜索用时 31 毫秒
91.
In the natural world, bottom-up hierarchical construction of complex structures results in materials with remarkable properties. A well known example is the nacre of mollusk shells, commonly called "mother of pearl", whose excellent strength and toughness has been the subject of research for many decades. A significant discovery has been the presence of periodic layers called "growth lines". These are thin distinct layers within the bulk of the shell which form periodically, with their structure affected by environmental changes. Studies of their formation and behavior offer valuable insight into the architecture of seashells. In this work, the structure and mechanical behavior of growth lines in shells of abalone Haliotis gigantea were investigated using electron microscopy and nanoindentation. Growth lines form directly out of nacre into layers of blocks and irregular particles. In comparison to nacre, they have basic structures, form rapidly, and are harder, which suggest that they serve a protective role during lifecycle transitions. This exemplifies how natural structures are able to closely control growth architecture in order to form different structures for different functions, all from the same base materials.  相似文献   
92.
Many tumor cells rely on aerobic glycolysis instead of oxidative phosphorylation for their continued proliferation and survival. Myc and HIF-1 are believed to promote such a metabolic switch by, in part, upregulating gene expression of pyruvate dehydrogenase (PDH) kinase 1 (PDHK1), which phosphorylates and inactivates mitochondrial PDH and consequently pyruvate dehydrogenase complex (PDC). Here we report that tyrosine phosphorylation enhances PDHK1 kinase activity by promoting ATP and PDC binding. Functional PDC can form in mitochondria outside of the matrix in some cancer cells and PDHK1 is commonly tyrosine phosphorylated in human cancers by diverse oncogenic tyrosine kinases localized to different mitochondrial compartments. Expression of phosphorylation-deficient, catalytic hypomorph PDHK1 mutants in cancer cells leads to decreased cell proliferation under hypoxia and increased oxidative phosphorylation with enhanced mitochondrial utilization of pyruvate and reduced tumor growth in xenograft nude mice. Together, tyrosine phosphorylation activates PDHK1 to promote the Warburg effect and tumor growth.  相似文献   
93.
Sporulation in fission yeast represents a unique mode of cell division in which a new cell is formed within the cytoplasm of a mother cell. This event is accompanied by formation of the forespore membrane (FSM), which becomes the plasma membrane of spores. At prophase II, the spindle pole body (SPB) forms an outer plaque, from which formation of the FSM is initiated. Several components of the SPB play an indispensable role in SPB modification, and therefore in sporulation. In this paper, we report the identification of a novel SPB component, Spo7, which has a pleckstrin homology (PH) domain. We found that Spo7 was essential for initiation of FSM assembly, but not for SPB modification. Spo7 directly bound to Meu14, a component of the leading edge of the FSM, and was essential for proper localization of Meu14. The PH domain of Spo7 had affinity for phosphatidylinositol 3-phosphate (PI3P). spo7 mutants lacking the PH domain showed aberrant spore morphology, similar to that of meu14 and phosphatidylinositol 3-kinase (pik3) mutants. Our study suggests that Spo7 coordinates formation of the leading edge and initiation of FSM assembly, thereby accomplishing accurate formation of the FSM.  相似文献   
94.
95.
Iizuka R  Ueno T  Morone N  Funatsu T 《PloS one》2011,6(7):e22253
Group II chaperonins found in archaea and in eukaryotic cytosol mediate protein folding without a GroES-like cofactor. The function of the cofactor is substituted by the helical protrusion at the tip of the apical domain, which forms a built-in lid on the central cavity. Although many studies on the change in lid conformation coupled to the binding and hydrolysis of nucleotides have been conducted, the molecular mechanism of lid closure remains poorly understood. Here, we performed a single-molecule polarization modulation to probe the rotation of the helical protrusion of a chaperonin from a hyperthermophilic archaeum, Thermococcus sp. strain KS-1. We detected approximately 35° rotation of the helical protrusion immediately after photorelease of ATP. The result suggests that the conformational change from the open lid to the closed lid state is responsible for the approximately 35° rotation of the helical protrusion.  相似文献   
96.
The mass spectrometry-based peptidomics approaches have proven its usefulness in several areas such as the discovery of physiologically active peptides or biomarker candidates derived from various biological fluids including blood and cerebrospinal fluid. However, to identify biomarkers that are reproducible and clinically applicable, development of a novel technology, which enables rapid, sensitive, and quantitative analysis using hundreds of clinical specimens, has been eagerly awaited. Here we report an integrative peptidomic approach for identification of lung cancer-specific serum peptide biomarkers. It is based on the one-step effective enrichment of peptidome fractions (molecular weight of 1,000-5,000) with size exclusion chromatography in combination with the precise label-free quantification analysis of nano-LC/MS/MS data set using Expressionist proteome server platform. We applied this method to 92 serum samples well-managed with our SOP (standard operating procedure) (30 healthy controls and 62 lung adenocarcinoma patients), and quantitatively assessed the detected 3,537 peptide signals. Among them, 118 peptides showed significantly altered serum levels between the control and lung cancer groups (p<0.01 and fold change >5.0). Subsequently we identified peptide sequences by MS/MS analysis and further assessed the reproducibility of Expressionist-based quantification results and their diagnostic powers by MRM-based relative-quantification analysis for 96 independently prepared serum samples and found that APOA4 273-283, FIBA 5-16, and LBN 306-313 should be clinically useful biomarkers for both early detection and tumor staging of lung cancer. Our peptidome profiling technology can provide simple, high-throughput, and reliable quantification of a large number of clinical samples, which is applicable for diverse peptidome-targeting biomarker discoveries using any types of biological specimens.  相似文献   
97.
98.
Vascular endothelial growth factor receptor-2 (VEGFR-2) activation by VEGF-A is essential in vasculogenesis and angiogenesis. We have generated a pan-phosphorylation site map of VEGFR-2 and identified one major tyrosine phosphorylation site in the kinase insert (Y951), in addition to two major sites in the C-terminal tail (Y1175 and Y1214). In developing vessels, phosphorylation of Y1175 and Y1214 was detected in all VEGFR-2-expressing endothelial cells, whereas phosphorylation of Y951 was identified in a subset of vessels. Phosphorylated Y951 bound the T-cell-specific adapter (TSAd), which was expressed in tumor vessels. Mutation of Y951 to F and introduction of phosphorylated Y951 peptide or TSAd siRNA into endothelial cells blocked VEGF-A-induced actin stress fibers and migration, but not mitogenesis. Tumor vascularization and growth was reduced in TSAd-deficient mice, indicating a critical role of Y951-TSAd signaling in pathological angiogenesis.  相似文献   
99.
Ypt7p, a fission yeast (Schizosaccharomyces pombe) homologue of Rab7 GTPase, mediates fusion of endosomes to vacuoles and homotypic vacuole fusion. Here, we report that Ypt7p plays important roles in sporulation. Most ypt7Delta asci produced less than four spores, which were apparently immature and germinated at low frequency. Furthermore, ypt7Delta cells were defective in development of the forespore membranes. Vacuoles in sporulating cells were found to undergo extensive homotypic vacuole fusion to form a few large compartments occupying the entire cytoplasm of asci. This extensive vacuole fusion depended on Ypt7p.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号