首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9053篇
  免费   1244篇
  国内免费   3篇
生物科学   10300篇
  2021年   128篇
  2019年   96篇
  2018年   112篇
  2016年   136篇
  2015年   269篇
  2014年   329篇
  2013年   372篇
  2012年   492篇
  2011年   430篇
  2010年   310篇
  2009年   281篇
  2008年   390篇
  2007年   355篇
  2006年   308篇
  2005年   340篇
  2004年   365篇
  2003年   310篇
  2002年   319篇
  2001年   205篇
  2000年   231篇
  1999年   229篇
  1998年   119篇
  1997年   123篇
  1996年   108篇
  1995年   73篇
  1994年   94篇
  1993年   83篇
  1992年   192篇
  1991年   183篇
  1990年   186篇
  1989年   179篇
  1988年   170篇
  1987年   168篇
  1986年   162篇
  1985年   157篇
  1984年   151篇
  1983年   129篇
  1982年   102篇
  1981年   100篇
  1980年   106篇
  1979年   145篇
  1978年   120篇
  1977年   96篇
  1976年   100篇
  1975年   98篇
  1974年   88篇
  1973年   114篇
  1972年   97篇
  1971年   92篇
  1969年   81篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
Genetic evidence in Arabidopsis (Arabidopsis thaliana) suggests that the auxin precursor indole-3-butyric acid (IBA) is converted into active indole-3-acetic acid (IAA) by peroxisomal β-oxidation; however, direct evidence that Arabidopsis converts IBA to IAA is lacking, and the role of IBA-derived IAA is not well understood. In this work, we directly demonstrated that Arabidopsis seedlings convert IBA to IAA. Moreover, we found that several IBA-resistant, IAA-sensitive mutants were deficient in IBA-to-IAA conversion, including the indole-3-butyric acid response1 (ibr1) ibr3 ibr10 triple mutant, which is defective in three enzymes likely to be directly involved in peroxisomal IBA β-oxidation. In addition to IBA-to-IAA conversion defects, the ibr1 ibr3 ibr10 triple mutant displayed shorter root hairs and smaller cotyledons than wild type; these cell expansion defects are suggestive of low IAA levels in certain tissues. Consistent with this possibility, we could rescue the ibr1 ibr3 ibr10 short-root-hair phenotype with exogenous auxin. A triple mutant defective in hydrolysis of IAA-amino acid conjugates, a second class of IAA precursor, displayed reduced hypocotyl elongation but normal cotyledon size and only slightly reduced root hair lengths. Our data suggest that IBA β-oxidation and IAA-amino acid conjugate hydrolysis provide auxin for partially distinct developmental processes and that IBA-derived IAA plays a major role in driving root hair and cotyledon cell expansion during seedling development.The auxin indole-3-acetic acid (IAA) controls both cell division and cell expansion and thereby orchestrates many developmental events and environmental responses. For example, auxin regulates lateral root initiation, root and stem elongation, and leaf expansion (for review, see Davies, 2004). Normal plant morphogenesis and environmental responses require modulation of auxin levels by controlling biosynthesis, regulating transport, and managing storage forms (for review, see Woodward and Bartel, 2005a). In some storage forms, the carboxyl group of IAA is conjugated to amino acids or peptides or to sugars, and free IAA can be released by hydrolases when needed (Bartel et al., 2001; Woodward and Bartel, 2005a). A second potential auxin storage form is the side chain-lengthened compound indole-3-butyric acid (IBA), which can be synthesized from IAA (Epstein and Ludwig-Müller, 1993) and is suggested to be shortened into IAA by peroxisomal β-oxidation (Bartel et al., 2001; Woodward and Bartel, 2005a).Genetic evidence suggests that the auxin activity of both IAA-amino acid conjugates and IBA requires free IAA to be released from these precursors (Bartel and Fink, 1995; Zolman et al., 2000). Mutation of Arabidopsis (Arabidopsis thaliana) genes encoding IAA-amino acid hydrolases, including ILR1, IAR3, and ILL2, reduces plant sensitivity to the applied IAA-amino acid conjugates that are substrates of these enzymes, including IAA-Leu, IAA-Phe, and IAA-Ala (Bartel and Fink, 1995; Davies et al., 1999; LeClere et al., 2002; Rampey et al., 2004), which are present in Arabidopsis (Tam et al., 2000; Kowalczyk and Sandberg, 2001; Kai et al., 2007).Unlike the simple one-step release of free IAA from amino acid conjugates, release of IAA from IBA is suggested to require a multistep process (Zolman et al., 2007, 2008). Conversion of IBA to IAA has been demonstrated in a variety of plants (Fawcett et al., 1960; for review, see Epstein and Ludwig-Müller, 1993) and may involve β-oxidation of the four-carbon carboxyl side chain of IBA to the two-carbon side chain of IAA (Fawcett et al., 1960; Zolman et al., 2000, 2007). Mutation of genes encoding the apparent β-oxidation enzymes INDOLE-3-BUTYRIC ACID RESPONSE1 (IBR1), IBR3, or IBR10 results in IBA resistance, but does not alter IAA response or confer a dependence on exogenous carbon sources for growth following germination (Zolman et al., 2000, 2007, 2008), consistent with the possibility that these enzymes function in IBA β-oxidation but not fatty acid β-oxidation.Both conjugate hydrolysis and IBA β-oxidation appear to be compartmentalized. The IAA-amino acid hydrolases are predicted to be endoplasmic reticulum localized (Bartel and Fink, 1995; Davies et al., 1999) and enzymes required for IBA responses, including IBR1, IBR3, and IBR10, are peroxisomal (Zolman et al., 2007, 2008). Moreover, many peroxisome biogenesis mutants, such as peroxin5 (pex5) and pex7, are resistant to exogenous IBA, but remain IAA sensitive (Zolman et al., 2000; Woodward and Bartel, 2005b).Although the contributions of auxin transport to environmental and developmental auxin responses are well documented (for review, see Petrášek and Friml, 2009), the roles of various IAA precursors in these processes are less well understood. Expansion of root epidermal cells to control root architecture is an auxin-regulated process in which these roles can be dissected. Root epidermal cells provide soil contact and differentiate into files of either nonhair cells (atrichoblasts) or hair cells (trichoblasts). Root hairs emerge from trichoblasts as tube-shaped outgrowths that increase the root surface area, thus aiding in water and nutrient uptake (for review, see Grierson and Schiefelbein, 2002). Root hair length is determined by the duration of root hair tip growth, which is highly sensitive to auxin levels (for review, see Grierson and Schiefelbein, 2002). Mutants defective in the ABCG36/PDR8/PEN3 ABC transporter display lengthened root hairs and hyperaccumulate [3H]IBA, but not [3H]IAA, in root tip auxin transport assays (Strader and Bartel, 2009), suggesting that ABCG36 functions as an IBA effluxer and that IBA promotes root hair elongation. The related ABCG37/PDR9 transporter also can efflux IBA (Strader et al., 2008b; Růžička et al., 2010) and may have some functional overlap with ABCG36 (Růžička et al., 2010). In addition to lengthened root hairs, abcg36/pdr8/pen3 mutants display enlarged cotyledons, a second high-auxin phenotype. Both of these developmental phenotypes are suppressed by the mildly peroxisome-defective mutant pex5-1 (Strader and Bartel, 2009), suggesting that IBA contributes to cell expansion by serving as a precursor to IAA, which directly drives the increased cell expansion that underlies these phenotypes. However, whether IBA-derived IAA contributes to cell expansion events during development of wild-type plants is not known.Here, we directly demonstrate that peroxisome-defective mutants are defective in the conversion of IBA to IAA, consistent with previous reports that these genes are necessary for full response to applied IBA. We found that a mutant defective in three suggested IBA-to-IAA conversion enzymes displays low-auxin phenotypes, including decreased root hair expansion and decreased cotyledon size. We further found that these mutants suppress the long-root-hair and enlarged cotyledon phenotypes of an abcg36/pdr8 mutant, suggesting that endogenous IBA-derived IAA drives root hair and cotyledon expansion in wild-type seedlings.  相似文献   
992.
We explored the crosstalk between protein degradation and synthesis in cancer cells. The tumorigenic cell line, MCF7, showed enhanced proteasome activity compared to the nontumorigenic line, MCF10A. Although there was no difference in the sensitivity of MCF7 and MCF10A cells to proteasome inhibition in complete growth medium, combining proteasome inhibition with amino acid deprivation led to reduced protein synthesis and survival of MCF7 cells, with a lesser effect on MCF10A cells. Additional cancer cell lines (including CAG and A431) could be strongly sensitized to proteasome inhibition by concomitant amino acid deprivation, whereas others were completely resistant to proteasome inhibition. We hypothesize that protein catabolism contributes to the pool of free amino acids available for protein synthesis, leading to a crucial role of the proteasome in cell survival during amino acid depletion, in some tumor cell lines.  相似文献   
993.
The complex formation between β-lactoglobulin and pectins of varying overall charge and local charge density were investigated. Isothermal titration calorimetry experiments were carried out to determine the enthalpic contribution to the complex formation at pH 4.25 and various ionic strengths. Complex formation was found to be an exothermic process for all conditions. Combination with previously published binding constants by Sperber et al. (Sperber, B. L. H. M.; Cohen Stuart, M. A.; Schols, H. A.; Voragen, A. G. J.; Norde, W. Biomacromolecules 2009, 10, 3246-3252) allows for the determination of the changes in the Gibbs energy and the change in entropy of the system upon complex formation between β-lactoglobulin and pectin. The local charge density of pectin is found to determine the balance between enthalpic and entropic contributions. For a high local charge density pectin, the main contribution to the Gibbs energy is of an enthalpic nature, supported by a favorable entropy effect due to the release of small counterions. A pectin with a low local charge density has a more even distribution of the enthalpic and entropic part to the change of the Gibbs energy. The enthalpic part is reduced due to the lower charge density, while the relative increase of the entropic contribution is thought to be caused by a change in the location of the binding place for pectin on the β-lactoglobulin molecule. The association of the hydrophobic methyl esters on pectin with an exposed hydrophobic region on β-lg results in the release of water molecules from the hydrophobic region and surrounding the methyl esters of the pectin molecule. An increase in the ionic strength decreases the enthalpic contribution due to the shielding of electrostatic attraction in favor of the entropic contribution, supporting the idea that the release of water molecules from hydrophobic areas plays a part in the complex formation.  相似文献   
994.
Control of infection with Mycobacterium tuberculosis (Mtb) requires Th1-type immunity, of which CD8+ T cells play a unique role. High frequency Mtb-reactive CD8+ T cells are present in both Mtb-infected and uninfected humans. We show by limiting dilution analysis that nonclassically restricted CD8+ T cells are universally present, but predominate in Mtb-uninfected individuals. Interestingly, these Mtb-reactive cells expressed the Vα7.2 T-cell receptor (TCR), were restricted by the nonclassical MHC (HLA-Ib) molecule MR1, and were activated in a transporter associated with antigen processing and presentation (TAP) independent manner. These properties are all characteristics of mucosal associated invariant T cells (MAIT), an “innate” T-cell population of previously unknown function. These MAIT cells also detect cells infected with other bacteria. Direct ex vivo analysis demonstrates that Mtb-reactive MAIT cells are decreased in peripheral blood mononuclear cells (PBMCs) from individuals with active tuberculosis, are enriched in human lung, and respond to Mtb-infected MR1-expressing lung epithelial cells. Overall, these findings suggest a generalized role for MAIT cells in the detection of bacterially infected cells, and potentially in the control of bacterial infection.  相似文献   
995.

Background

Tuberculosis is the leading cause of death in South Africa by death notification, but accurate diagnosis of tuberculosis is challenging in this setting of high HIV prevalence. We conducted limited autopsies on young adults dying in a single public hospital in the province of KwaZulu-Natal between October 2008 and August 2009 in order to estimate the magnitude of deaths attributable to tuberculosis.

Methods and Findings

We studied a representative sample of 240 adult inpatients (aged 20–45 years) dying after admission to Edendale Hospital. Limited autopsies included collection of respiratory tract secretions and tissue by needle core biopsies of lung, liver, and spleen. Specimens were examined by fluorescent microscopy for acid-fast bacilli and cultured in liquid media; cultures positive for M. tuberculosis were tested for drug susceptibility to first- and second-line antibiotics. Ninety-four percent of our study cohort was HIV seropositive and 50% of decedents had culture-positive tuberculosis at the time of death. Fifty percent of the participants were on treatment for tuberculosis at the time of death and 58% of these treated individuals remained culture positive at the time of death. Of the 50% not receiving tuberculosis treatment, 42% were culture positive. Seventeen percent of all positive cultures were resistant to both isoniazid and rifampin (i.e., multidrug resistant); 16% of patients dying during the initiation phase of their first ever course of tuberculosis treatment were infected with multidrug-resistant bacilli.

Conclusions

Our findings reveal the immense toll of tuberculosis among HIV-positive individuals in KwaZulu-Natal. The majority of decedents who remained culture positive despite receiving tuberculosis treatment were infected with pan-susceptible M. tuberculosis, suggesting that the diagnosis of tuberculosis was made too late to alter the fatal course of the infection. There is also a significant burden of undetected multidrug-resistant tuberculosis among HIV-coinfected individuals dying in this setting. New public health approaches that improve early diagnosis of tuberculosis and accelerate the initiation of treatment are urgently needed in this setting. Please see later in the article for the Editors'' Summary  相似文献   
996.
HIV-1 is present in anatomical compartments and bodily fluids. Most transmissions occur through sexual acts, making virus in semen the proximal source in male donors. We find three distinct relationships in comparing viral RNA populations between blood and semen in men with chronic HIV-1 infection, and we propose that the viral populations in semen arise by multiple mechanisms including: direct import of virus, oligoclonal amplification within the seminal tract, or compartmentalization. In addition, we find significant enrichment of six out of nineteen cytokines and chemokines in semen of both HIV-infected and uninfected men, and another seven further enriched in infected individuals. The enrichment of cytokines involved in innate immunity in the seminal tract, complemented with chemokines in infected men, creates an environment conducive to T cell activation and viral replication. These studies define different relationships between virus in blood and semen that can significantly alter the composition of the viral population at the source that is most proximal to the transmitted virus.  相似文献   
997.
Previous work has detected an RNase E-like endoribonucleolytic activity in cell extracts obtained from Streptomyces. Here, we identify a Streptomyces coelicolor gene, rns, encoding a 140 kDa protein (RNase ES) that shows endoribonucleolytic cleavage specificity characteristic of RNase E, confers viability on and allows propagation of Escherichia coli cells lacking RNase E and accomplishes RNase E-like regulation of plasmid copy number in E. coli. However, notwithstanding its complementation of rne-deleted E. coli, RNase ES did not accurately process 9S rRNA from E. coli. Additionally, whereas RNase E is normally required for E. coli survival, rns is not an essential gene in S. coelicolor. Deletion analysis mapped the catalytic domain of RNase ES near its centre and showed that regions located near the RNase ES termini interact with an S. coelicolor homologue of polynucleotide phosphorylase (PNPase) - a major component of E. coli RNase E-based degradosomes. The interacting arginine- and proline-rich segments resemble the C-terminally located degradosome scaffold region of E. coli RNase E. Our results indicate that RNase ES is a structurally shuffled RNase E homologue showing evolutionary conservation of functional RNase E-like enzymatic activity, and suggest the existence of degradosome-like complexes in Gram-positive bacteria.  相似文献   
998.
S Nakielny  P Cohen  J Wu    T Sturgill 《The EMBO journal》1992,11(6):2123-2129
A 'MAP kinase activator' was purified several thousand-fold from insulin-stimulated rabbit skeletal muscle, which resembled the 'activator' from nerve growth factor-stimulated PC12 cells in that it could be inactivated by incubation with protein phosphatase 2A, but not by protein tyrosine phosphatases and its apparent molecular mass was 45-50 kDa. In the presence of MgATP, 'MAP kinase activator' converted the normal 'wild-type' 42 kDa MAP kinase from an inactive dephosphorylated form to the fully active diphosphorylated species. Phosphorylation occurred on the same threonine and tyrosine residues which are phosphorylated in vivo in response to growth factors or phorbol esters. A mutant MAP kinase produced by changing a lysine at the active centre to arginine was phosphorylated in an identical manner by the 'MAP kinase activator', but no activity was generated. The results demonstrate that 'MAP kinase activator' is a protein kinase (MAP kinase kinase) and not a protein that stimulates the autophosphorylation of MAP kinase. MAP kinase kinase is the first established example of a protein kinase that can phosphorylate an exogenous protein on threonine as well as tyrosine residues.  相似文献   
999.
1000.
A comparative proteomic approach, using two dimensional gel electrophoresis and mass spectrometry, has been developed to compare and elucidate the differences among the cellular proteomes of four closely related isogenic O/C, SIN, N/R and T, B. clausii strains during both exponential and stationary phases of growth. Image analysis of the electropherograms reveals a high degree of concordance among the four proteomes, some proteins result, however, differently expressed. The proteins spots exhibiting high different expression level were identified, by mass-spectrometry analysis, as alcohol dehydrogenase (ADHA, EC1.2.1.3; ABC0046 isoform) aldehyde dehydrogenase (DHAS, EC 1.2.1.3; ABC0047 isoform) and flagellin-protein of B. clausii KSM-k16. The different expression levels of the two dehydrogenases were confirmed by quantitative RT-PCR and dehydrogenases enzymatic activity. The different patterns of protein expression can be considered as cell proteome signatures of the different strains.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号