首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21825篇
  免费   1713篇
  国内免费   1529篇
生物科学   25067篇
  2024年   34篇
  2023年   220篇
  2022年   326篇
  2021年   1042篇
  2020年   656篇
  2019年   901篇
  2018年   810篇
  2017年   576篇
  2016年   897篇
  2015年   1370篇
  2014年   1538篇
  2013年   1800篇
  2012年   2066篇
  2011年   1771篇
  2010年   1058篇
  2009年   981篇
  2008年   1203篇
  2007年   979篇
  2006年   952篇
  2005年   734篇
  2004年   654篇
  2003年   539篇
  2002年   433篇
  2001年   402篇
  2000年   339篇
  1999年   315篇
  1998年   250篇
  1997年   214篇
  1996年   215篇
  1995年   197篇
  1994年   176篇
  1993年   139篇
  1992年   209篇
  1991年   163篇
  1990年   114篇
  1989年   136篇
  1988年   82篇
  1987年   71篇
  1986年   82篇
  1985年   87篇
  1984年   29篇
  1983年   33篇
  1982年   38篇
  1981年   18篇
  1980年   30篇
  1979年   29篇
  1978年   20篇
  1977年   21篇
  1976年   12篇
  1972年   15篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.
The triple‐negative breast cancer is the most malignant type of breast cancer. Its pathogenesis and prognosis remain poor despite the significant advances in breast cancer diagnosis and therapy. Meanwhile, long noncoding RNAs (LncRNAs) play a pivotal role in the progression of malignant tumors. In this study, we found that LncRNA‐ZEB2‐AS1 was dramatically up‐regulated in our breast cancer specimens and cells (MDA231), especially in metastatic tumor specimens and highly invasive cells, and high lncRNA‐ZEB2‐AS1 expression is associated with clinicopathologic features and short survival of breast cancer patients. LncRNA‐ZEB2‐AS1 promotes the proliferation and metastasis of MDA231 cells in SCID mice. Thus, it is regarded as an oncogene in triple‐negative breast cancer. It is mainly endo‐nuclear and situated near ZEB2, positively regulating ZEB2 expression and activating the epithelial mesenchymal transition via the PI3K/Akt/GSK3β/Zeb2 signaling pathway. Meanwhile, EGF‐induced F‐actin polymerization in MDA231 cells can be suppressed by reducing lncRNA‐ZEB2‐AS1 expression. The migration and invasion of triple‐negative breast cancer can be altered through cytoskeleton rearrangement. In summary, we demonstrated that lncRNA‐ZEB2‐AS1 is an important factor affecting the development of triple‐negative breast cancer and thus a potential oncogene target.  相似文献   
992.
993.
Gao  Lin  Liu  Xin-min  Du  Yong-mei  Zong  Hao  Shen  Guo-ming 《Annals of microbiology》2019,69(13):1531-1536
A reasonable cultivation pattern is beneficial to maintain soil microbial activity and optimize the structure of the soil microbial community. To determine the effect of tobacco−peanut (Nicotiana tabacum−Arachis hypogaea) relay intercropping on the microbial community structure in soil, we compared the effects of relay intercropping and continuous cropping on the soil bacteria community structure. We collected soil samples from three different cropping patterns and analyzed microbial community structure and diversity using high-throughput sequencing technology. The number of operational taxonomic units (OTU) for bacterial species in the soil was maximal under continuous peanut cropping. At the phylum level, the main bacteria identified in soil were Proteobacteria, Actinobacteria, and Acidobacteria, which accounted for approximately 70% of the total. The proportions of Actinobacteria and Firmicutes increased, whereas the proportion of Proteobacteria decreased in soil with tobacco–peanut relay intercropping. Moreover, the proportions of Firmicutes and Proteobacteria among the soil bacteria further shifted over time with tobacco–peanut relay intercropping. At the genus level, the proportions of Bacillus and Lactococcus increased in soil with tobacco–peanut relay intercropping. The community structure of soil bacteria differed considerably with tobacco–peanut relay intercropping from that detected under peanut continuous cropping, and the proportions of beneficial bacteria (the phyla Actinobacteria and Firmicutes, and the genera Bacillus and Lactococcus) increased while the proportion of potentially pathogenic bacteria (the genera Variibacter and Burkholderia) decreased. These results provide a basis for adopting tobacco–peanut relay intercropping to improve soil ecology and microorganisms, while making better use of limited cultivable land.  相似文献   
994.
Congenital scoliosis (CS) is the result of anomalous vertebrae development, but the pathogenesis of CS remains unclear. Long non‐coding RNAs (lncRNAs) have been implicated in embryo development, but their role in CS remains unknown. In this study, we investigated the role and mechanisms of a specific lncRNA, SULT1C2A, in somitogenesis in a rat model of vitamin A deficiency (VAD)‐induced CS. Bioinformatics analysis and quantitative real‐time PCR (qRT‐PCR) indicated that SULT1C2A expression was down‐regulated in VAD group, accompanied by increased expression of rno‐miR‐466c‐5p but decreased expression of Foxo4 and somitogenesis‐related genes such as Pax1, Nkx3‐2 and Sox9 on gestational day (GD) 9. Luciferase reporter and small interfering RNA (siRNA) assays showed that SULT1C2A functioned as a competing endogenous RNA to inhibit rno‐miR‐466c‐5p expression by direct binding, and rno‐miR‐466c‐5p inhibited Foxo4 expression by binding to its 3′ untranslated region (UTR). The spatiotemporal expression of SULT1C2A, rno‐miR‐466c‐5p and Foxo4 axis was dynamically altered on GDs 3, 8, 11, 15 and 21 as detected by qRT‐PCR and northern blot analyses, with parallel changes in Protein kinase B (AKT) phosphorylation and PI3K expression. Taken together, our findings indicate that SULT1C2A enhanced Foxo4 expression by negatively modulating rno‐miR‐466c‐5p expression via the PI3K‐ATK signalling pathway in the rat model of VAD‐CS. Thus, SULT1C2A may be a potential target for treating CS.  相似文献   
995.
996.
Practical application of hard carbon materials in sodium‐ion batteries (SIBs) is largely limited by their low initial coulombic efficiency (ICE), which may be improved by increasing the graphitization degree. However, biomass‐derived hard carbon is usually nongraphitizable and extremely difficult to graphitize by direct heating even at 3000 °C. Herein, a general strategy is reported for fabricating hard carbon materials with graphite crystals at 1300 °C promoted by external graphite that serves as a crystal template for the growth of graphite crystals. The graphite crystals enable the contacted pseudographitic domains with a high‐level ordered structure, large domain size, and low defects, leading to an enhanced ICE. The obtained hard carbon materials with graphite crystals, using the carbonized eggshell membranes, and sucrose‐derived microsphere as precursors, achieve very high ICE of 89% and 91% with reversible capacity of 310 and 301 mA h g?1, respectively. Therefore, using external graphite to promote high‐level ordering pseudographitic domains at low temperature is quite useful to improve ICE for SIB applications.  相似文献   
997.
A fast, nondestructive, camera‐based method to capture optical bandgap images of perovskite solar cells (PSCs) with micrometer‐scale spatial resolution is developed. This imaging technique utilizes well‐defined and relatively symmetrical band‐to‐band luminescence spectra emitted from perovskite materials, whose spectral peak locations coincide with absorption thresholds and thus represent their optical bandgaps. The technique is employed to capture relative variations in optical bandgaps across various PSCs, and to resolve optical bandgap inhomogeneity within the same device due to material degradation and impurities. Degradation and impurities are found to both cause optical bandgap shifts inside the materials. The results are confirmed with micro‐photoluminescence spectroscopy scans. The excellent agreement between the two techniques opens opportunities for this imaging concept to become a quantified, high spatial resolution, large‐area characterization tool of PSCs. This development continues to strengthen the high value of luminescence imaging for the research and development of this photovoltaic technology.  相似文献   
998.
International Journal of Peptide Research and Therapeutics - It is demonstrated that gonadotropin-releasing hormone (GnRH) analogs can directly inhibit the proliferation of reproductive tissue...  相似文献   
999.
Shen  Rongyan  Chen  Zehui  Dong  Xiaona  Shen  Hongchi  Su  Peng  Mao  Linqiang  Zhang  Wenyi 《Annals of microbiology》2019,69(12):1259-1266
As the most common variant of microcystins (MCs), microcystin-LR (MCLR) is a kind of toxins produced by some species of harmful cyanobacteria and more and more attention has been paid to it. Biodegradation has been extensively investigated and recognized to be a cost-efficient and environmentally benign method for MC clean-up. In order to further research the growth characteristics of strain and the biodegradation characteristics of MCLR, it is necessary to use the dynamic mathematical models as powerful and useful tools. In this study, strain CQ5 was screened and identified by morphological observation, physiological and biochemical tests, and 16S rDNA sequence analysis. The kinetic models of cell growth and MCLR degradation were established with the Gompertz model and revised Monod kinetic model. The results showed that strain CQ5 had the closest phylogenetic similarity to Lysinibacillus boronitolerans (T-10a, AB199591) in the phylogenetic tree, with 99% bootstrap support. Strain CQ5 could utilize MCLR as the carbon and nitrogen source for growth. When the initial pH value was 7 and the inoculation amount was 3%, strain CQ5 grew well in MSM, in which the MCLR crude extract was used as the carbon and nitrogen source of strain CQ5. Within 244 h, the MCLR concentration changed from 14.12 to 1.57 μg/L and its degradation rate could reach 88.88%. The growth curve fitted with the Gompertz growth model (Nt = 1.3119 * exp(−0.1237 * exp(−6.6341t)), R2 > 0.99). The process of MCLR degradation agreed with the first-order reaction kinetic equation (lnS = 2.64764 − 0.01537t, R2 > 0.99). The linkage relationship between MCLR concentration, cell density, and MCLR degradation rate was consistent with the revised Monod equation (V = 0.342S, R2 > 0.97) at low substrate concentration, where Vmax/ Ks was 0.342. The dynamic relationship in which strain CQ5 degraded MCLR and used it as the carbon and nitrogen source to promote its own growth could be explained by the equation S = 14.12 e− 0.342 Nt (N = 1.08). The growth of strain CQ5 and MCLR concentration in degradation system could be simulated and predicted by the dynamic mathematical models in this study. And the predicted results were very consistent. These results could provide theoretical reference for studying the mechanism of MCLR biodegradation and promote the engineering application of strain CQ5.  相似文献   
1000.
Solar‐driven water splitting is in urgent need for sustainable energy research, for which accelerating oxygen evolution kinetics along with charge migration is the key issue. Herein, Mn3+ within π‐conjugated carbon nitride (C3N4) in form of Mn–N–C motifs is coordinated. The spin state (eg orbital filling) of Mn centers is regulated by controlling the bond strength of Mn–N. It is demonstrated that Mn serves as intrinsic oxygen evolution reaction (OER) site and the kinetics is dependent on its spin state with an optimized eg occupancy of ≈0.95. Specifically, the governing role of eg occupancy originates from the varied binding strength between Mn and OER intermediates. Benefiting from the rapid spin state‐mediated OER kinetics, as well as extended optical absorption (to 600 nm) and accelerated charge separation by intercalated metal‐to‐ligand state, Mn–C3N4 stoichiometrically splits pure water with H2 production rate up to 695.1 µmol g?1 h?1 under simulated sunlight irradiation (AM1.5), and achieves an apparent quantum efficiency of 4.0% at 420 nm, superior to most solid‐state based photocatalysts to date. This work for the first time correlates photocatalytic redox kinetics with the spin state of active sites, and suggests a nexus between photocatalysis and spin theory.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号